Skip to main content
Log in

A labeling algorithm based on a forest of decision trees

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Connected component labeling (CCL) is one of the most fundamental operations in image processing. CCL  is a procedure for assigning a unique label to each connected component. It is a mandatory step between low-level and high-level image processing. In this work, a general method is given to improve the neighbourhood exploration in a two-scan labeling. The neighbourhood values are considered as commands of a decision table. This decision table can be represented as a decision tree. A block-based approach is proposed so that values of several pixels are given by one decision tree. This block-based approach can be extended to multiple connectivities, 2D and 3D. In a raster scan, already seen pixels can be exploited to generate smaller decision trees. New decision trees are automatically generated from every possible command. This process creates a decision forest that minimises the number of memory accesses. Experimental results show that this method is faster than the state-of-the-art labelling algorithms and require fewer memory accesses. The whole process can be generalised to any given connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Baltieri, D., Vezzani, R., Cucchiara, R.: 3DPeS: 3D People Dataset for Surveillance and Forensics. In: Proceedings of the 2011 Joint ACM Workshop on Human Gesture and Behavior Understanding, pp. 59–64 (2011)

  2. Bolelli, F., Baraldi, L., Cancilla, M., Grana, C.: Connected components labeling on drags. In: Proceedings of the 25th International Conference on Pattern Recognition, Beijing, China (2018)

  3. Bolelli, F., Cancilla, M., Baraldi, L., Grana, C.: Towards reliable experiments on the performance of connected components labeling algorithms. J. Real-Time Image Process. (2018). https://doi.org/10.1007/s11554-018-0756-1

    Article  Google Scholar 

  4. Cederberg, R.: Chain-link coding and segmentation for raster scan devices. Comput. Graph. Image Process. 10(3), 224–234 (1979)

    Google Scholar 

  5. Chang, F., Chen, C.: A component-labeling algorithm using contour tracing technique. In: International Conference on Document Analysis and Recognition, pp. 741–745 (2003)

  6. Chang, F., Chen, C.J., Lu, C.J.: A linear-time component-labeling algorithm using contour tracing technique. Comput. Vis. Image Underst. 93(2), 206–220 (2004)

    Google Scholar 

  7. Chang, W., Chui, C., Yang, J.: Block-based connected-component labeling algorithm using binary decision trees. Sensors (Basel, Switzerland) 15(9), 23763–23787 (2015)

    Google Scholar 

  8. Clemens, J.: Optical character recognition for reading machine applications. Ph.D. thesis, Massachusetts Institute of Technology (1965)

  9. Danielsson, P.E.: An improvement of Kruse’s segmentation algorithm. Comput. Graph. Image Process. 17(4), 394–396 (1981)

    Google Scholar 

  10. Dong, F., Irshad, H., Oh, E.-Y., Lerwill, M.F., Brachtel, E.F., Jones, N.C., Knoblauch, N.W., Montaser-Kouhsari, L., Johnson, N.B., Rao, L.K., et al.: Computational pathology to discriminate benign from malignant intraductal proliferations of the breast. PLoS One 9(12), e114885 (2014)

    Google Scholar 

  11. Fiorio, C., Gustedt, J.: Two linear time union-find strategies for image processing. Theor. Comput. Sci. 154, 165–181 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Galil, Z., Italiano, G.: Data structures and algorithms for disjoint set union problems. ACM Comput. Surv. 23(3), 319–344 (1991)

    Google Scholar 

  13. Grana, C., Baraldi, L., Bolelli, F.: Optimized connected components labeling with pixel prediction. In: Advanced Concepts for Intelligent Vision Systems, vol. 10016 (2016)

  14. Grana, C., Borghesani, D., Cucchiara, R.: Optimized block-based connected components labeling with decision trees. IEEE Trans. Image Process. 19(6), 1596–1609 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Grana, C., Montangero, M., Borghesani, D.: Optimal decision trees for local image processing algorithms. Pattern Recognit. Lett. 33, 2302–2310 (2012)

    Google Scholar 

  16. Haralick, R.: Some neighborhood operations. In: Real Time Parallel Computing: Image Analysis, pp. 11–35 (1981)

  17. He, L., Chao, Y., Suzuki, K.: A linear time two-scan labeling algorithm. IEEE Int. Conf. Image Process. 5, 241–244 (2007)

    Google Scholar 

  18. He, L., Chao, Y., Suzuki, K., Wu, K.: Fast connected-components labeling. Pattern Recognit. 42(9), 1977–1987 (2008)

    MATH  Google Scholar 

  19. He, L., Chao, Y., Suzuki, K.: A run-based two-scan labeling algorithm. IEEE Trans. Image Process. 17(5), 749–756 (2008)

    MathSciNet  Google Scholar 

  20. He, L., Zhao, X., Chao, Y., Suzuki, K.: Configuration-transition-based connected-component labeling. IEEE Trans. Image Process. 23(2), 943–951 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Huiskes, M. J., Lew, M. S.: The MIR Flickr Retrieval Evaluation. In: Proceedings of the 2008 ACM International Conference on Multimedia Information Retrieval, New York, USA (2008). http://press.liacs.nl/mirflickr/. Accessed 17 Sept 2019

  22. Kruse, B.: A fast algorithm for segmentation of connected components in binary images. In: Proceedings of First Scandinavian Conference on Image Analysis, Lund, Sweden (1980)

  23. Lacassagne, L., Zavidovique, B.: Light speed labeling: efficient connected component labeling on RISC architectures. J. Real-Time Image Process. 6(2), 1596–1609 (2010)

    Google Scholar 

  24. Lumia, R., Shapiro, L., Zuniga, O.: A new connected components algorithm for virtual memory computers. Comput. Vis. Graph. Image Process. 22(2), 287–300 (1983)

    Google Scholar 

  25. Maltoni, D., Maio, D., Jain, A., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, New York (2009)

    MATH  Google Scholar 

  26. Morrin, T.: Chain-link copression of arbitrary black-white images. Comput. Graph. Image Process. 5(2), 172–189 (1979)

    Google Scholar 

  27. Patwary, M., Blair, J., Manne, F.: Experiments on union-find algorithms for the disjoint-set data structure. In: Experimental Algorithms, pp. 411–423. Springer (2010)

  28. Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. J. ACM 13(4), 471–494 (1966)

    MATH  Google Scholar 

  29. Samet, H., Tamminen, M.: An improved approach to connected component labeling of images. In: International Conference on Computer Vision and Pattern Recognition, pp. 312–318 (1986)

  30. Schumacher, H., Sevcik, K.: The synthetic approach to decision table conversion. Commun. ACM 19(6), 343–351 (1976)

    MATH  Google Scholar 

  31. Schwartz, J., Sharir, M., Siegel, A.: An efficient algorithm for finding connected components in a binary image. Technical report 154, New York University Courant Institute of Mathematical Sciences, Computer Science Division (1985)

  32. Stefano, L.D., Bulgarelli, A.: A simple and efficient connected components labeling algorithm. In: Processing 10th International Conference on Image Analysis and Processing, pp. 322–327. IEEE (1999)

  33. Suzuki, K., Horiba, I., Sugie, N.: Linear-time connected component labeling based on sequential local operations. Comput. Vis. Image Underst. 89(1), 1–23 (2003)

    MATH  Google Scholar 

  34. The Legacy Tobacco Document Library (LTDL) University of California, San Francisco (2007). http://legacy.library.ucsf.efu/. Accessed 11 Mar 2010

  35. Wu, K., Otoo, E., Shoshani, A.: Optimizing connected component labeling algorithms. SPIE Conf. Med. Imaging 5747, 1965–1976 (2005)

    Google Scholar 

  36. Wu, K., Otoo, E., Suzuki, K.: Optimizing 2-pass connected components labeling algorithms. Pattern Anal. Appl. 12(2), 117–135 (2009)

    MathSciNet  Google Scholar 

  37. Zhao, H., Fan, Y., Zhang, T., Sang, H.: Stripe-based connected components labelling. Electron. Lett. 46(21), 1434–1436 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Chabardès.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chabardès, T., Dokládal, P. & Bilodeau, M. A labeling algorithm based on a forest of decision trees. J Real-Time Image Proc 17, 1527–1545 (2020). https://doi.org/10.1007/s11554-019-00912-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-019-00912-8

Keywords

Navigation