Skip to main content
Log in

A high-dynamic range CMOS camera based on dual-gain channels

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

To overcome the ghosting phenomenon of multi-exposure technology, a new high-dynamic range (HDR) image processing method is proposed in this paper, which combines the features from dual-gain channel images. Further, a complete CMOS camera based on the HDR method is implemented, which produces a real-time HDR live video streams. This camera can capture the details of bright and dark areas in the scene completely with an extended dynamic range up to 95 dB. An ALTERA FPGA is the core processing unit of the entire camera, and it completes all the functional modules of the camera efficiently, including dual-channel video capture, image caching, HDR synthesis and tone mapping. Finally, the real-time HDR video flow has a display resolution of 1920 × 1080 and a frame rate of 60 fps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lee, S.H., Woo, H., Gi Kang, M.G.: global illumination invariant object detection with level set based bimodal segmentation. IEEE Trans. Circ. Syst. Video Technol. 20(4), 616–620 (2010)

    Article  Google Scholar 

  2. Mann, S., Lo, R.C.H., Ovtcharov, K., et al.: Realtime HDR (high dynamic range) video for eyetap wearable computers, FPGA-based seeing aids, and glasseyes (EyeTaps). In: 25th IEEE Canadian Conference on Electrical and Computer Engineering, pp. 1–6 (2012)

  3. Mendis, S.K., Kemeny, S.E., Gee, R.C., et al.: CMOS active pixel image sensors for highly integrated imaging systems. IEEE J. Solid-State Circ. 32(2), 187–197 (1997)

    Article  Google Scholar 

  4. Lapray, P.J., Heyrman, B., Ginhac, D.: HDR-ARtiSt: an adaptive real-time smart camera for high dynamic range imaging. J. Real-Time Image Process. 12(4), 747–762 (2016)

    Article  Google Scholar 

  5. Ebrahimi, T., Tescher, A.G.: High dynamic range imaging. J. Xian Univ. Posts Telecommun. 52(4), 154–189 (2013)

    Google Scholar 

  6. Kavusi, S.: Quantitative study of high-dynamic-range image sensor architectures. In: Proceedings of SPIE—the International Society for Optical Engineering, pp. 298–306 (2004)

  7. Jung, C.: High dynamic range imaging on mobile devices using fusion of multi exposure images. Opt. Eng. 52(10), 102004 (2013)

    Article  Google Scholar 

  8. Lapray, P.J., Heyrman, B., Ginhac, D.: Hardware-based smart camera for recovering high dynamic range video from multiple exposures. Opt. Eng. 53(10), 102110 (2014)

    Article  Google Scholar 

  9. Karaduzovic-Hadziabdic, K., Hasi-Telalovi, J., Mantiuk, R.K.H.: Assessment of multi-exposure hdr image deghosting methods. Comput. Graph. 3, 1–17 (2017)

    Article  Google Scholar 

  10. Abolbashari, M., Magalhaes, F., Araujo, F.M.M., et al.: High dynamic range compressive imaging: a programmable imaging system. Opt. Eng. 51(51), 071407–071408 (2012)

    Article  Google Scholar 

  11. Popovic, V., Seyid, K., Pignat, E., et al.: Multi-camera platform for panoramic real-time HDR video construction and rendering. J. Real-Time Image Process. 12(4), 697–708 (2016)

    Article  Google Scholar 

  12. Hassan, F., Carletta, J.E.: An FPGA-based architecture for a local tone-mapping operator. J. Real-Time Image Process. 2(4), 293–308 (2007)

    Article  Google Scholar 

  13. Jacquot, B.C., Johnsonwilliams, N.: Multiple-samples-method enabling high dynamic range imaging for high frame rate CMOS image sensor by FPGA and co-processor. Opt. Photon. Inform. Process. 8, 921609 (2014)

    Google Scholar 

  14. Robertson, M.A., Borman, S., Stevenson, R.L.: Estimation-theoretic approach to dynamic range enhancement using multiple exposures. J. Electr. Imaging 12(2) (2003)

  15. Debevec, P.E, Malik, J.: Recovering high dynamic range radiance maps from photographs. In: Conference on Computer Graphics and Interactive Techniques, pp. 369–378 (1997)

  16. Mitsunaga, T., Nayar, S.K.: Radiometric self calibration. Comput. Vis. Pattern Recogn. 1374 (2002)

  17. Lee, J., Jeon, G., Jeong, J.: Chromatic adaptation-based tone reproduction for high-dynamic-range imaging. Opt. Eng. 48(10), 7002 (2009)

    Google Scholar 

  18. Drago, F., Myszkowski, K., Annen, T., et al.: Adaptive logarithmic mapping for displaying high contrast scenes. Comput. Graph. Forum 22(3), 419–426 (2010)

    Article  Google Scholar 

  19. Yoshida, A., Blanz, V., Myszkowski, K., et al.: Perceptual evaluation of tone mapping operators with real-world scenes. In: Human Vision and Electronic Imaging X, SPIE, pp. 192–203 (2005)

  20. Martin, A., Wimmer, M., Neumann, L., et al.: Evaluation of HDR tone mapping methods using essential perceptual attributes. Comput. Graph. 32(3), 330–349 (2008)

    Article  Google Scholar 

  21. Duan, J., Bressan, M., Dance, C., et al.: Tone-mapping high dynamic range images by novel histogram adjustment. Pattern Recogn. 43(5), 1847–1862 (2010)

    Article  Google Scholar 

  22. Liu, Y.T., Xing, D.Y., Wang, Y., et al.: A dual-exposure wide dynamic range CMOS image sensor with 12-bit column-parallel incremental sigma-delta ADC. Microelectron. J. 189–194 (2016)

  23. Vytla, L., Hassan, F., Carletta, J.E.: A real-time implementation of gradient domain high dynamic range compression using a local poisson solver. J. Real-Time Image Process. 8(2), 153–167 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by China Postdoctoral Science Foundation (Grant No. 2017M611813).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunsheng Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Qian, Y., Kong, X. et al. A high-dynamic range CMOS camera based on dual-gain channels. J Real-Time Image Proc 17, 703–712 (2020). https://doi.org/10.1007/s11554-019-00877-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-019-00877-8

Keywords

Navigation