Abstract
To overcome the ghosting phenomenon of multi-exposure technology, a new high-dynamic range (HDR) image processing method is proposed in this paper, which combines the features from dual-gain channel images. Further, a complete CMOS camera based on the HDR method is implemented, which produces a real-time HDR live video streams. This camera can capture the details of bright and dark areas in the scene completely with an extended dynamic range up to 95 dB. An ALTERA FPGA is the core processing unit of the entire camera, and it completes all the functional modules of the camera efficiently, including dual-channel video capture, image caching, HDR synthesis and tone mapping. Finally, the real-time HDR video flow has a display resolution of 1920 × 1080 and a frame rate of 60 fps.
Similar content being viewed by others
References
Lee, S.H., Woo, H., Gi Kang, M.G.: global illumination invariant object detection with level set based bimodal segmentation. IEEE Trans. Circ. Syst. Video Technol. 20(4), 616–620 (2010)
Mann, S., Lo, R.C.H., Ovtcharov, K., et al.: Realtime HDR (high dynamic range) video for eyetap wearable computers, FPGA-based seeing aids, and glasseyes (EyeTaps). In: 25th IEEE Canadian Conference on Electrical and Computer Engineering, pp. 1–6 (2012)
Mendis, S.K., Kemeny, S.E., Gee, R.C., et al.: CMOS active pixel image sensors for highly integrated imaging systems. IEEE J. Solid-State Circ. 32(2), 187–197 (1997)
Lapray, P.J., Heyrman, B., Ginhac, D.: HDR-ARtiSt: an adaptive real-time smart camera for high dynamic range imaging. J. Real-Time Image Process. 12(4), 747–762 (2016)
Ebrahimi, T., Tescher, A.G.: High dynamic range imaging. J. Xian Univ. Posts Telecommun. 52(4), 154–189 (2013)
Kavusi, S.: Quantitative study of high-dynamic-range image sensor architectures. In: Proceedings of SPIE—the International Society for Optical Engineering, pp. 298–306 (2004)
Jung, C.: High dynamic range imaging on mobile devices using fusion of multi exposure images. Opt. Eng. 52(10), 102004 (2013)
Lapray, P.J., Heyrman, B., Ginhac, D.: Hardware-based smart camera for recovering high dynamic range video from multiple exposures. Opt. Eng. 53(10), 102110 (2014)
Karaduzovic-Hadziabdic, K., Hasi-Telalovi, J., Mantiuk, R.K.H.: Assessment of multi-exposure hdr image deghosting methods. Comput. Graph. 3, 1–17 (2017)
Abolbashari, M., Magalhaes, F., Araujo, F.M.M., et al.: High dynamic range compressive imaging: a programmable imaging system. Opt. Eng. 51(51), 071407–071408 (2012)
Popovic, V., Seyid, K., Pignat, E., et al.: Multi-camera platform for panoramic real-time HDR video construction and rendering. J. Real-Time Image Process. 12(4), 697–708 (2016)
Hassan, F., Carletta, J.E.: An FPGA-based architecture for a local tone-mapping operator. J. Real-Time Image Process. 2(4), 293–308 (2007)
Jacquot, B.C., Johnsonwilliams, N.: Multiple-samples-method enabling high dynamic range imaging for high frame rate CMOS image sensor by FPGA and co-processor. Opt. Photon. Inform. Process. 8, 921609 (2014)
Robertson, M.A., Borman, S., Stevenson, R.L.: Estimation-theoretic approach to dynamic range enhancement using multiple exposures. J. Electr. Imaging 12(2) (2003)
Debevec, P.E, Malik, J.: Recovering high dynamic range radiance maps from photographs. In: Conference on Computer Graphics and Interactive Techniques, pp. 369–378 (1997)
Mitsunaga, T., Nayar, S.K.: Radiometric self calibration. Comput. Vis. Pattern Recogn. 1374 (2002)
Lee, J., Jeon, G., Jeong, J.: Chromatic adaptation-based tone reproduction for high-dynamic-range imaging. Opt. Eng. 48(10), 7002 (2009)
Drago, F., Myszkowski, K., Annen, T., et al.: Adaptive logarithmic mapping for displaying high contrast scenes. Comput. Graph. Forum 22(3), 419–426 (2010)
Yoshida, A., Blanz, V., Myszkowski, K., et al.: Perceptual evaluation of tone mapping operators with real-world scenes. In: Human Vision and Electronic Imaging X, SPIE, pp. 192–203 (2005)
Martin, A., Wimmer, M., Neumann, L., et al.: Evaluation of HDR tone mapping methods using essential perceptual attributes. Comput. Graph. 32(3), 330–349 (2008)
Duan, J., Bressan, M., Dance, C., et al.: Tone-mapping high dynamic range images by novel histogram adjustment. Pattern Recogn. 43(5), 1847–1862 (2010)
Liu, Y.T., Xing, D.Y., Wang, Y., et al.: A dual-exposure wide dynamic range CMOS image sensor with 12-bit column-parallel incremental sigma-delta ADC. Microelectron. J. 189–194 (2016)
Vytla, L., Hassan, F., Carletta, J.E.: A real-time implementation of gradient domain high dynamic range compression using a local poisson solver. J. Real-Time Image Process. 8(2), 153–167 (2013)
Acknowledgements
This work is supported by China Postdoctoral Science Foundation (Grant No. 2017M611813).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Tang, X., Qian, Y., Kong, X. et al. A high-dynamic range CMOS camera based on dual-gain channels. J Real-Time Image Proc 17, 703–712 (2020). https://doi.org/10.1007/s11554-019-00877-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-019-00877-8