A high-dynamic range CMOS camera based on dual-gain channels

  • Xiaodong Tang
  • Yunsheng QianEmail author
  • Xiangyu Kong
  • Honggang Wang
Special Issue Paper


To overcome the ghosting phenomenon of multi-exposure technology, a new high-dynamic range (HDR) image processing method is proposed in this paper, which combines the features from dual-gain channel images. Further, a complete CMOS camera based on the HDR method is implemented, which produces a real-time HDR live video streams. This camera can capture the details of bright and dark areas in the scene completely with an extended dynamic range up to 95 dB. An ALTERA FPGA is the core processing unit of the entire camera, and it completes all the functional modules of the camera efficiently, including dual-channel video capture, image caching, HDR synthesis and tone mapping. Finally, the real-time HDR video flow has a display resolution of 1920 × 1080 and a frame rate of 60 fps.


CMOS camera HDR Dual channels FPGA 



This work is supported by China Postdoctoral Science Foundation (Grant No. 2017M611813).


  1. 1.
    Lee, S.H., Woo, H., Gi Kang, M.G.: global illumination invariant object detection with level set based bimodal segmentation. IEEE Trans. Circ. Syst. Video Technol. 20(4), 616–620 (2010)CrossRefGoogle Scholar
  2. 2.
    Mann, S., Lo, R.C.H., Ovtcharov, K., et al.: Realtime HDR (high dynamic range) video for eyetap wearable computers, FPGA-based seeing aids, and glasseyes (EyeTaps). In: 25th IEEE Canadian Conference on Electrical and Computer Engineering, pp. 1–6 (2012)Google Scholar
  3. 3.
    Mendis, S.K., Kemeny, S.E., Gee, R.C., et al.: CMOS active pixel image sensors for highly integrated imaging systems. IEEE J. Solid-State Circ. 32(2), 187–197 (1997)CrossRefGoogle Scholar
  4. 4.
    Lapray, P.J., Heyrman, B., Ginhac, D.: HDR-ARtiSt: an adaptive real-time smart camera for high dynamic range imaging. J. Real-Time Image Process. 12(4), 747–762 (2016)CrossRefGoogle Scholar
  5. 5.
    Ebrahimi, T., Tescher, A.G.: High dynamic range imaging. J. Xian Univ. Posts Telecommun. 52(4), 154–189 (2013)Google Scholar
  6. 6.
    Kavusi, S.: Quantitative study of high-dynamic-range image sensor architectures. In: Proceedings of SPIE—the International Society for Optical Engineering, pp. 298–306 (2004)Google Scholar
  7. 7.
    Jung, C.: High dynamic range imaging on mobile devices using fusion of multi exposure images. Opt. Eng. 52(10), 102004 (2013)CrossRefGoogle Scholar
  8. 8.
    Lapray, P.J., Heyrman, B., Ginhac, D.: Hardware-based smart camera for recovering high dynamic range video from multiple exposures. Opt. Eng. 53(10), 102110 (2014)CrossRefGoogle Scholar
  9. 9.
    Karaduzovic-Hadziabdic, K., Hasi-Telalovi, J., Mantiuk, R.K.H.: Assessment of multi-exposure hdr image deghosting methods. Comput. Graph. 3, 1–17 (2017)CrossRefGoogle Scholar
  10. 10.
    Abolbashari, M., Magalhaes, F., Araujo, F.M.M., et al.: High dynamic range compressive imaging: a programmable imaging system. Opt. Eng. 51(51), 071407–071408 (2012)CrossRefGoogle Scholar
  11. 11.
    Popovic, V., Seyid, K., Pignat, E., et al.: Multi-camera platform for panoramic real-time HDR video construction and rendering. J. Real-Time Image Process. 12(4), 697–708 (2016)CrossRefGoogle Scholar
  12. 12.
    Hassan, F., Carletta, J.E.: An FPGA-based architecture for a local tone-mapping operator. J. Real-Time Image Process. 2(4), 293–308 (2007)CrossRefGoogle Scholar
  13. 13.
    Jacquot, B.C., Johnsonwilliams, N.: Multiple-samples-method enabling high dynamic range imaging for high frame rate CMOS image sensor by FPGA and co-processor. Opt. Photon. Inform. Process. 8, 921609 (2014)Google Scholar
  14. 14.
    Robertson, M.A., Borman, S., Stevenson, R.L.: Estimation-theoretic approach to dynamic range enhancement using multiple exposures. J. Electr. Imaging 12(2) (2003)Google Scholar
  15. 15.
    Debevec, P.E, Malik, J.: Recovering high dynamic range radiance maps from photographs. In: Conference on Computer Graphics and Interactive Techniques, pp. 369–378 (1997)Google Scholar
  16. 16.
    Mitsunaga, T., Nayar, S.K.: Radiometric self calibration. Comput. Vis. Pattern Recogn. 1374 (2002)Google Scholar
  17. 17.
    Lee, J., Jeon, G., Jeong, J.: Chromatic adaptation-based tone reproduction for high-dynamic-range imaging. Opt. Eng. 48(10), 7002 (2009)Google Scholar
  18. 18.
    Drago, F., Myszkowski, K., Annen, T., et al.: Adaptive logarithmic mapping for displaying high contrast scenes. Comput. Graph. Forum 22(3), 419–426 (2010)CrossRefGoogle Scholar
  19. 19.
    Yoshida, A., Blanz, V., Myszkowski, K., et al.: Perceptual evaluation of tone mapping operators with real-world scenes. In: Human Vision and Electronic Imaging X, SPIE, pp. 192–203 (2005)Google Scholar
  20. 20.
    Martin, A., Wimmer, M., Neumann, L., et al.: Evaluation of HDR tone mapping methods using essential perceptual attributes. Comput. Graph. 32(3), 330–349 (2008)CrossRefGoogle Scholar
  21. 21.
    Duan, J., Bressan, M., Dance, C., et al.: Tone-mapping high dynamic range images by novel histogram adjustment. Pattern Recogn. 43(5), 1847–1862 (2010)CrossRefGoogle Scholar
  22. 22.
    Liu, Y.T., Xing, D.Y., Wang, Y., et al.: A dual-exposure wide dynamic range CMOS image sensor with 12-bit column-parallel incremental sigma-delta ADC. Microelectron. J. 189–194 (2016)Google Scholar
  23. 23.
    Vytla, L., Hassan, F., Carletta, J.E.: A real-time implementation of gradient domain high dynamic range compression using a local poisson solver. J. Real-Time Image Process. 8(2), 153–167 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaodong Tang
    • 1
  • Yunsheng Qian
    • 1
    Email author
  • Xiangyu Kong
    • 1
  • Honggang Wang
    • 1
    • 2
  1. 1.School of Electronic and Optical EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.School of Information and Electrical EngineeringLudong UniversityYantaiChina

Personalised recommendations