Advertisement

Hybrid stopping model-based fast PU and CU decision for 3D-HEVC texture coding

  • Yue Li
  • Gaobo YangEmail author
  • Yapei Zhu
  • Xiangling Ding
  • Yun Song
  • Dengyong Zhang
Original Research Paper
  • 34 Downloads

Abstract

As an extension of High-Efficiency Video Coding (HEVC) standard, 3D-HEVC needs to encode multiple texture views and depth maps, which further increases the computational complexity. To reduce the complexity of dependent texture view coding, a fast prediction unit (PU) and coding unit (CU) decision method is proposed for 3D-HEVC based on hybrid stopping model. The inter-view correlation is used as a priori information to roughly predict the possible optimal PU and CU sizes. Then, by exploiting the encoded posterior information, the rate distortion cost correlation and the code block flag, the optimal PU and CU are further examined as being optimal or not. Experimental results show that the proposed fast PU and CU decision method achieves 52.7% encoding time saving on average with negligible loss of coding efficiency for 3D-HEVC-dependent texture view coding.

Keywords

3D High-Efficiency Video Coding Prediction unit Coding unit Rate distortion cost Hybrid stopping model 

Notes

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (61572183, 61379143, 61772087) and National Key R&D Program of China (2018YFB1003205).

References

  1. 1.
    Merkle, P., Mler, K., Wiegand, T.: 3D video: acquisition, coding, and display. IEEE Trans. Consum. Electron. 56(2), 946–950 (2010)CrossRefGoogle Scholar
  2. 2.
    Zhu, C., Zhao, Y., Yu, L., Tanimoto, M.: 3D-TV System with Depth-image-based Rendering: Architecture, Techniques and Challenges. Springer, New York (2014)Google Scholar
  3. 3.
    Müller, K., Schwarz, H., Marpe, D., Bartnik, C., Bosse, S., Brust, H., Hinz, T., Lakshman, H., Merkle, P., Rhee, F.H., Tech, G., Winken, M., Wiegand, T.: 3D high-efficiency video coding for multi-view video and depth data. IEEE Trans. Image Process. 22(9), 3366–3378 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Yang, M., Grecos, C.: Fast intra encoding decisions for high efficiency video coding standard. J. Real-Time Image Process. 13(4), 797–806 (2017)CrossRefGoogle Scholar
  5. 5.
    Zhu, W., Yi, Y., Zhang, H., Chen, P., Zhang, H.: Fast mode decision algorithm for HEVC intra coding based on texture partition and direction. J. Real-Time Image Process. (2018).  https://doi.org/10.1007/s11554-018-0766-z Google Scholar
  6. 6.
    Li, Y., Yang, G.B., Zhu, Y.P., Ding, X.L., Sun, X.M.: Unimodal stopping model based early SKIP mode decision for high efficiency video coding. IEEE Trans. Multimed. 19(7), 1431–1441 (2017)CrossRefGoogle Scholar
  7. 7.
    Pan, Z., Lei, J., Zhang, Y., Wang, F.: Adaptive fractional-pixel motion estimation skipped algorithm for efficient HEVC motion estimation. ACM Trans. Multimed. Comput. Commun. Appl. 14(1), Article 12 (2018)Google Scholar
  8. 8.
    Ding, X., Yang, G., Li, R., Zhang, L., Li, Y., Sun, X.: Identification of motion-compensated frame rate up-conversion based on residual signals. IEEE Trans. Circuits Syst. Video Technol. 28(7), 1497–1512 (2018)CrossRefGoogle Scholar
  9. 9.
    Ding, X., Zhu, N., Li, L., Li, Y., Yang, G.: Robust localization of interpolated frames by motion-compensated frame-interpolation based on artifact indicated map and tchebichef moments, IEEE Trans Circuits Syst. Video Technol. (2018).  https://doi.org/10.1109/TCSVT.2018.2852799 Google Scholar
  10. 10.
    Ding, X., Li, Y., Xia, M., He, J., Yang, G.: Detection of motion compensated frame interpolation via motion-aligned temporal difference. Multimed. Tools Appl. (2018).  https://doi.org/10.1007/s11042-018-6504-5
  11. 11.
    Pan, Z., Yi, X., Chen, L.: Motion and disparity vectors early determination for texture video in 3D-HEVC. Multimed. Tools Appl.  https://doi.org/10.1007/s11042-018-6830-7, (2018)
  12. 12.
    Li, Y., Yang, G.B., Zhu, Y.P., Liu, C., Liu, K.: Adaptive mode decision for multiview video coding based on macroblock position constraint model. J. Real-Time Image Process. 12(3), 575–582 (2016)CrossRefGoogle Scholar
  13. 13.
    Li, Y., Yang, G.B., Chen, N., Zhu, Y.P., Ding, X.L.: Early DIRECT mode decision for MVC using MB mode homogeneity and RD cost correlation. IEEE Trans. Broadcast. 62(3), 700–708 (2016)CrossRefGoogle Scholar
  14. 14.
    Zeng, H.Q., Wang, X.L., Cai, C.H., Chen, J., Zhang, Y.: Fast multiview video coding using adaptive prediction structure and hierarchical mode decision. IEEE Trans. Circuits Syst. Video Technol. 24(9), 1566–1578 (2014)CrossRefGoogle Scholar
  15. 15.
    Zhao, T., Kwong, S., Wang, H., Wang, Z., Pan, Z., Kuo, C.J.: Multiview coding mode decision with hybrid optimal stopping model. IEEE Trans. Image Process. 22(4), 1598–1609 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Chi, G., Jin, X., Dai, Q.: A quad-tree and statistics based fast CU depth decision algorithm for 3D-HEVC. In: IEEE Int. Conf. on Multimedia and Expo Workshops (ICMEW), pp. 1–5 (2014)Google Scholar
  17. 17.
    Mora, E.G., Jung, J., Cagnazzo, M., et al.: Initialization, limitation, and predictive coding of the depth and texture quadtree in 3D-HEVC. IEEE Trans. Circuits Syst. Video Technol. 24(9), 1554–1565 (2014)CrossRefGoogle Scholar
  18. 18.
    Li, Y., Yang, G.B., Zhu, Y.P., Ding, X.L., Sun, X.M.: Adaptive inter CU depth decision for HEVC using optimal selection model and encoding parameters. IEEE Trans. Broadcast. 63(3), 535–546 (2017)CrossRefGoogle Scholar
  19. 19.
    Öztekin, A., Ercelebi, E.: An early split and skip algorithm for fast intra CU selection in HEVC. J. Real-Time Image Process. 12, 273–283 (2016)CrossRefGoogle Scholar
  20. 20.
    Shen, L., Liu, Z., Zhang, X., Zhao, W., Zhang, Z.: An effective CU size decision method for HEVC encoders. IEEE Trans. Multimed. 15(2), 465–470 (2013)CrossRefGoogle Scholar
  21. 21.
    Tan, H.L., Ko, C.C., Rahardja, S.: Fast coding quad-tree decisions using prediction residuals statistics for high efficiency video coding (HEVC). IEEE Trans. Broadcast. 62(1), 128–133 (2016)CrossRefGoogle Scholar
  22. 22.
    Xiong, J., Li, H., Meng, F., Wu, Q., Ngan, K.: Fast HEVC inter CU decision based on latent SAD estimation. IEEE Trans. Multimed. 12(4), 1121–1135 (2015)Google Scholar
  23. 23.
    Zhu, L., Zhang, Y., Pan, Z., Wang, R., Kwong, S., Peng, Z.: Binary and multi-class learning based low complexity optimization for HEVC encoding. IEEE Trans. Broadcast. 63(3), 547–561 (2017)CrossRefGoogle Scholar
  24. 24.
    Zhang, Y., Kwong, S., Wang, X., Yuan, H., Pan, Z., Xu, L.: Machine learning-based coding unit depth decisions for flexible complexity allocation in high efficiency video coding. IEEE Trans. Image Process. 24(7), 2225–2238 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Tohidypour, H.R., Pourazad, M.T., Nasiopoulos, P.: A low complexity mode decision approach for HEVC-based 3D video coding using a Bayesian method, pp. 895–899. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing(ICASSP) (2014)Google Scholar
  26. 26.
    Tohidypour, H.R., Pourazad, M.T., Nasiopoulos, P.: Online-learning-based complexity reduction scheme for 3D-HEVC. IEEE Trans. Circuits Syst. Video Technol. 26(10), 1870–1883 (2016)CrossRefGoogle Scholar
  27. 27.
    Zhang, N., Zhao, D., Chen, Y., et al.: Fast encoder decision for texture coding in 3D-HEVC. Signal Process. Image Commun. 29(9), 951–61 (2014)CrossRefGoogle Scholar
  28. 28.
    Shen, L., An, P., Zhang, Z., Hu, Q., Chen, Z.: A 3D-HEVC fast mode decision algorithm for real-time applications. ACM Trans. Multimed. Comput. Commun. Appl., 11(3), Article 34 (2015)Google Scholar
  29. 29.
    Zhang, Q., Huang, K., Wang, X., Jiang, B., Gan, Y.: Efficient multiview video plus depth coding for 3D-HEVC based on complexity classification of the treeblock. J. Real-Time Image Process., pp. 1–18 (2017)Google Scholar
  30. 30.
    Lei, L., Duan, J., Wu, F., Ling, N., Hou, C.: Fast mode decision based on grayscale similarity and inter-view correlation for depth map coding in 3D-HEVC. IEEE Trans. Circuits Syst. Video Technol. 28(3), 706–718 (2018)CrossRefGoogle Scholar
  31. 31.
    Zhang, Q., Zhang, N., Wei, T., Huang, K., Qian, X., Gan, Y.: Fast depth map mode decision based on depth-texture correlation and edge classification for 3D-HEVC. J. Vis. Commun. Image R 45, 170–180 (2017)CrossRefGoogle Scholar
  32. 32.
    Shen, L., An, P., Liu, Z.: Context-adaptive based CU processing for 3D-HEVC. PLoS One 12(2), e171018 (2017)Google Scholar
  33. 33.
    Zhang, Q., Wu, Q., Wang, X., et al.: Early SKIP mode decision for three-dimensional high efficiency video coding using spatial and interview correlations. J. Electron. Imaging 23(5) (2014)Google Scholar
  34. 34.
    Song, Y., Jia, K.: Early merge mode decision for texture coding in 3D-HEVC. J. Vis. Commun. Image R 33, 60–68 (2015)CrossRefGoogle Scholar
  35. 35.
    Chen, H., Fu, C.H., Zhang, Y., Chan, Y.L., Siu, W.C.: Early merge mode decision for depth maps in 3D-HEVC. In: 22nd International Conference on Digital Signal Processing (DSP), pp. 1–5 (2017)Google Scholar
  36. 36.
    Li, Y., Yang, G., Zhu, Y., Ding, X., Gong, R.: Probability model-based early merge mode decision for dependent views coding in 3D-HEVC. ACM Trans. Multimed. Comput. Commun. Appl. 14(4), Article 85 (2018)Google Scholar
  37. 37.
    Rusanovsky, D., Muller, K., Vetro, A.: Common test conditions of 3DV core experiments. In: ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, Doc. JCT3V-A1100, Stockholm (2012)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yue Li
    • 1
  • Gaobo Yang
    • 1
    Email author
  • Yapei Zhu
    • 2
  • Xiangling Ding
    • 1
  • Yun Song
    • 3
  • Dengyong Zhang
    • 3
  1. 1.School of Information Science and EngineeringHunan UniversityChangshaChina
  2. 2.Faculty of Physics and Electronic Information ScienceHengyang Normal UniversityHengyangChina
  3. 3.School of Computer and Communication EngineeringChangsha University of Science and TechnologyChangshaChina

Personalised recommendations