Advertisement

A low-latency DMM-1 encoder for 3D-HEVC

  • Gaoming DuEmail author
  • Yifan Cao
  • Zhenmin Li
  • Duoli Zhang
  • Li Wang
  • Yukun Song
  • Yiming Ouyang
Special Issue Paper
  • 27 Downloads

Abstract

Depth modeling mode 1 (DMM-1) is vital for 3D high-efficiency video coding, since it results in low distortion and is suitable for sharp boundaries. When designing DMM-1 encoders, traditional work used serial methods to calculate all the wedgelets, leading to large latency; they may meet the requirements of 30 fps 1080P 3D video at most, but may be powerless for higher frame rate or 3D video resolution. In this paper, we propose a flexible parallel architecture for DMM-1 encoder. It can simultaneously evaluate all the wedgelets, saving encoding time without increasing distortion; it can also be configured into a partial-parallel architecture to save area. Experiments show that our method can save 33.6–94.3% encoding time for different test schemes. Synthesis results in SMIC 55 nm show that the VLSI design for proposed parallel architecture can meet the requirements of 1080P and higher-resolution video processing in real time.

Keywords

3D-HEVC Intra-prediction DMM-1 

Notes

References

  1. 1.
    Merkle, P., Bartnik, C., Muller, K., et al.: 3D video: depth coding based on inter-component prediction of block partitons. Pict. Coding Symp. 8355(3), 149–152 (2012)Google Scholar
  2. 2.
    Fu, C., Zhang, H., Su, W., et al.: Fast wedgelet pattern decision for DMM in 3D-HEVC. In: IEEE International Conference on Digital Signal Processing, pp. 477–481 (2015)Google Scholar
  3. 3.
    Sanchez, G., Marcon, C., Agostini, L., et al.: Real-time scalable hardware architecture for 3D-HEVC bipartiton modes. J. Real Time Image Process. 13(1), 71–83 (2017)CrossRefGoogle Scholar
  4. 4.
    Sanchez, G., Agostini, L., Mor, F., et al.: Low-area scalable hardware architecture for DMM-1 encoder of 3D-HEVC video coding standard. In: Symposium on Integrated Circuits and Systems Design, pp. 36–40 (2017)Google Scholar
  5. 5.
    Lee, J., Wey, H., Park, D., et al.: A fast and efficient multi-view depth image coding method based on temporal and inter-view correlations of texture images. IEEE Trans. Circuits Syst. Video Technol. 21, 1859–1868 (2011)CrossRefGoogle Scholar
  6. 6.
    Shen, L., Zhang, Z., Liu, Z., et al.: Inter mode selection for depth map coding in 3D video. IEEE Trans. Consum. Electron. 58(3), 926–931 (2012)Google Scholar
  7. 7.
    Cernigliaro, G., Jaureguizar, F., Cabrera, J., et al.: Low complexity mode decision and motion estimation for H.264/AVC based depth map encoding in free viewpoint video. IEEE Trans. Circuits Syst. Video Technol. 23, 769–783 (2013)CrossRefGoogle Scholar
  8. 8.
    Muller, K., Merkle, P., Tech, G., et al.: 3D video coding with depth modeling modes and view synthesis optimization. In: Signal & Information Processing Association Summit and Conference, pp. 1–4 (2012)Google Scholar
  9. 9.
    Zhang, Q., Li, N., Huang, L., et al.: Effective early termination algorithm for depth map intra coding in 3D-HEVC. Electron. Lett. 50(14), 994–996 (2014)CrossRefGoogle Scholar
  10. 10.
    Zhang, Q., Zhang, N., Wei, T., et al.: Fast depth map mode decision based on depth-texture correlation and edge classification for 3D-HEVC. J. Vis. Commun. Image Represent. 45(C), 170–180 (2017)CrossRefGoogle Scholar
  11. 11.
    Gu, Z., Zheng, J., Ling, N., et al.: Fast depth modeling mode selection for 3D-HEVC depth intra coding. In: IEEE International Conference Multimedia & Expo Workshops, vol. 370, pp. 1–4 (2013)Google Scholar
  12. 12.
    Gu, Z., Zheng, J., Ling, N., et al.: Fast intra prediction mode selection for intra depth map coding. In: ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JCT3V-E0238, 5th meeting, pp. 3–5 (2013)Google Scholar
  13. 13.
    Guo, R., He, G., Li, Y., et al.: Fast algorithm for prediction unit and mode decisions of intra depth coding in 3D-HEVC. In: IEEE International Conference on Image Processing, pp. 1121–1125 (2016)Google Scholar
  14. 14.
    Park, C.S.: Edge-based intramode selection for depth-map coding in 3D-HEVC. IEEE Trans. Image Process. 26(1), 155–162 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jaballah, S., Larabi, M., Tahar, J.: Heuristic inspired search method for fast wedgelet pattern decision in 3D-HEVC. In: IEEE European Workshop on Visual Information Processing, pp. 1–6 (2016)Google Scholar
  16. 16.
    Sanchez, G., Saldanha, M., Agostini, L., et al.: Depth modeling modes complexity control system for the 3D-HEVC video encoder. In: IEEE Signal Processing Conference, pp 1021–1025 (2017)Google Scholar
  17. 17.
    Hamout, H., Elyousfi, A.: Low complexity intra mode decision algorithm for 3D-HEVC. In: European Signal Processing Conference, pp. 1475–1479 (2017)Google Scholar
  18. 18.
    Sanchez, G., Saldanha, M., Balota, G., et al.: Complexity reduction for 3D-HEVC depth maps intra-frame prediction using simplified edge detector algorithm. In: IEEE International Conference on Image Processing, pp. 3209–3213 (2014)Google Scholar
  19. 19.
    Sanchez, G., Saldanha, M., Balota, G., et al.: A complexity reduction algorithm for depth maps intra prediction on the 3D-HEVC. In: IEEE Visual Communications and Image Processing Conference, pp. 137–140 (2014)Google Scholar
  20. 20.
    Sanchez, G., Saldanha, M., Zatt, B., et al.: S-GMOF: A gradient-based complexity reduction algorithm for depth-maps intra prediction on 3D-HEVC. In: IEEE Latin American Symposium on Circuits and Systems, pp. 1–4 (2015)Google Scholar
  21. 21.
    Saldanha, M., Zatt, B., Porto, M., et al.: Solutions for DMM-1 complexity reduction in 3D-HEVC based on gradient calculation. In: IEEE Latin American Symposium on Circuits and Systems, pp. 211–214 (2016)Google Scholar
  22. 22.
    Zhao, X., Chen, Y., Zhang, L., et al.: Texture mode dependent depth coding in 3D-HEVC. In: IEEE International Conference on Image Processing, pp. 1738–1741 (2013)Google Scholar
  23. 23.
    Li, W., Zheng, X., Zheng, J., et al.: An efficient depth MAP model based on geometric properties. In: IEEE Signal and Information Processing Association Summit and Conference, pp. 1–4 (2014)Google Scholar
  24. 24.
    Merkle, P., Muller, K., Marpe, D., et al.: Depth intra coding for 3D video based on geometric primitives. IEEE Trans. Circuits Syst. Video Technol. 26(3), 570–582 (2016)CrossRefGoogle Scholar
  25. 25.
    Ma, S., Wang, Y., Zhu, C., et al.: Reducing wedgelet lookup table size with down-sampling for depth map coding in 3D-HEVC. In: IEEE International Workshop on Multimedia Signal Processing, pp. 1–5 (2015)Google Scholar
  26. 26.
    Sanchez, G., Agostini, L., Marcon, C.: Energy-aware light-weight DMM-1 patterns decoders with efficiently storage in 3D-HEVC. In: Symposium on Integrated Circuits and Systems Design, pp. 1–6 (2016)Google Scholar
  27. 27.
    Zhao, L., Zhang, L., Ma, S., et al.: Fast mode decision algorithm for intra prediction in HEVC. In: IEEE Visual Communications and Image Processing, pp. 300–304 (2011)Google Scholar
  28. 28.
    Sanchez, G., Zatt, B., Porto, M., et al.: A real-time 5-views HD 1080P architecture for 3D-HEVC depth modeling mode 4. In: Symposium on Integrated Circuits and Systems Design, pp. 1–6 (2014)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Gaoming Du
    • 1
    Email author
  • Yifan Cao
    • 1
  • Zhenmin Li
    • 1
  • Duoli Zhang
    • 1
  • Li Wang
    • 1
  • Yukun Song
    • 1
  • Yiming Ouyang
    • 1
  1. 1.Hefei University of TechnologyHefeiChina

Personalised recommendations