Skip to main content
Log in

A multi-purpose image forensic method using densely connected convolutional neural networks

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Multi-purpose forensics is attracting increasing attention worldwide. In this paper, we propose a multi-purpose method based on densely connected convolutional neural networks (CNNs) for simultaneous detection of 11 different types of image manipulations. An efficient CNN structure has been specifically designed for forensics by considering vital architecture components, including the number of convolutional layers, the size of convolutional kernels, the nonlinear activations, and the type of pooling layer. The dense connectivity pattern, which has better parameter efficiency than the traditional pattern, is explored to strengthen the propagation of features related to image manipulation detection. When compared with four state-of-the-art methods, our experiments demonstrate that the proposed CNN architecture can achieve better performance in multiple operation detections for different image sizes, especially on small image patches. Consequently, the proposed method can accurately detect local image manipulations. The proposed method can achieve better overall performance when tested on different databases as well as better robustness against JPEG compression even under low-quality JPEG compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cao, G., Zhao, Y., Ni, R.: Detection of image sharpening based on histogram aberration and ringing artifacts. In: Proc. IEEE Int. conf. on multimedia and expo, New York, USA, pp. 1026–1029 (2009)

  2. Cao, G., Zhao, Y., Ni, R., Kot, A.C.: Unsharp masking sharpening detection via overshoot artifacts analysis. IEEE Signal Process. Lett. 18(10), 603–606 (2011)

    Article  Google Scholar 

  3. Cao, G., Zhao, Y., Ni, R., Li, X.: Contrast enhancement-based forensics in digital images. IEEE Trans. Inf. Forensics Secur. 9(3), 515–525 (2014)

    Article  Google Scholar 

  4. Singh, N., Gupta, A., Jain, R.C.: Adaptive histogram equalization based image forensics using statistics of DC DCT coefficients. Digital Image Process. Comput. Graph. 16(1), 125–134 (2018)

    Google Scholar 

  5. Kirchner, M., Fridrich, J.: On detection of median filtering in digital images. Proc. SPIE Media Forensics Secur. II Part IS&T-SPIE Electron. Imaging Symp. 7541, 754110 (2010)

    Google Scholar 

  6. Yuan, H.D.: Blind forensics of median filtering in digital images. IEEE Trans. Inf. Forensics Secur. 6(4), 1335–1345 (2011)

    Article  Google Scholar 

  7. Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting traces of resampling. IEEE Trans. Signal Process. 53(2), 758–767 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Luo, W., Huang, J., Qiu, G.: JPEG error analysis and its applications to digital image forensics. IEEE Trans. Inf. Forensics Secur. 5(3), 480–491 (2010)

    Article  Google Scholar 

  9. Bianchi, T., Piva, A.: Detection of nonaligned double JPEG compression based on integer periodicity maps. IEEE Trans. Inf Forensics Secur 7(2), 842–848 (2012)

    Article  Google Scholar 

  10. Qiu, X., Li, H., Luo, W., Huang, J.: A universal image forensic strategy based on steganalytic model. In: Proc. ACM workshop on information hiding and multimedia security, Salzburg, Austria, pp. 165–170 (2014)

  11. Fan, W., Wang, K., Cayre, F.: General-purpose image forensics using patch likelihood under image statistical models. In: Proc. IEEE Int. workshop on information forensics and security, Rome, Italy, pp. 1–6 (2015)

  12. Zeng, H., Kang, X., Peng, A.: A multi-purpose countermeasure against image anti-forensics using autoregressive model. Neurocomputing 189, 117–122 (2016)

    Article  Google Scholar 

  13. Li, H., Luo, W., Qiu, X., Huang, J.: Identification of various image operations using residual-based features. IEEE Trans. Circ Syst Video Technol 28(1), 31–45 (2016)

    Article  Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, Lake Tahoe, USA, pp. 1097–1105 (2012)

  15. Swietojanski, P., Ghoshal, A., Renals, S.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2016)

    Article  Google Scholar 

  16. Chen, J., Kang, X., Liu, Y., Wang, Z.J.: Median filtering forensics based on convolutional neural networks. IEEE Signal Process. Lett. 22(11), 1849–1853 (2015)

    Article  Google Scholar 

  17. Yu, J., Zhan, Y., Yang, J., Kang, X.: A multi-purpose image counter-antiforensic method using convolutional neural networks. In: Proc. 16th Int. Workshop on Digital Forensics and Watermarking, Beijing, China, pp. 3–15 (2016)

  18. Bondi, L., Guera, D., Bestagini, P., Delp, E.J., Tubaro, S.: First steps toward camera model identification with convolutional neural networks. IEEE Signal Process. Lett. 24(3), 259–263 (2017)

    Article  Google Scholar 

  19. Bayar, B., Stamm, M.C.: Constrained convolutional neural networks: a new approach towards general purpose image manipulation detection. IEEE Trans. Inf. Forensics Secur. 13, 1556–6013(c) 2018

    Article  Google Scholar 

  20. Chen, Y., Lyu, Z., Kang, X., Wang, Z.J.: A rotation-invariant convolutional neural network for image enhancement forensics. In: Proc. IEEE Int. Conf. on acoustics, speech and signal processing, Calgary, Canada, pp. 2111–2115 (2018)

  21. Chen, Y., Kang, X., Wang, Z.J., Zhang, Q.: Densely connected convolutional neural network for multi-purpose image forensics under anti-forensic attacks. In: Proc. ACM workshop on information hiding and multimedia security, Innsbruck, Austria, pp. 91–96 (2018)

  22. Liu, Y., Guan, Q., Zhao, X., Cao, Y.: Image forgery localization based on multi-scale convolutional neural networks. In: Proc. ACM workshop on information hiding and multimedia security, Innsbruck, Austria, pp. 85–90 (2018)

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proc. IEEE conf. on computer vision and pattern recognition, Honolulu, USA, pp. 770–778 (2016)

  24. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Proc. European conf. on computer vision, Amsterdam, Netherlands, pp. 630–645 (2016)

  25. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Proc. European conf. on computer vision, Amsterdam, Netherlands, pp. 646–661 (2016)

  26. Larsson, G., Maire, M., Shakhnarovich, G.: Fractalnet: ultra-deep neural networks without residuals. arXiv preprint arXiv:1605.07648 (2016)

  27. Huang, G., Liu, Z., Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proc. IEEE Conf. on computer vision and pattern recognition, Hawaii, USA, pp. 77–86 (2017)

  28. Yang, J., Shi, Y., Wong, E.K., Kang, X.: JPEG steganalysis based on DenseNet. arXiv preprint arXiv: 1711.09335 (2017)

  29. Stamm, M.C., Liu, K.J.R.: Anti-forensics of digital image compression. IEEE Trans. Inf. Forensics Secur. 6(3), 1050–1065 2011

    Article  Google Scholar 

  30. Xu, J., Ling, Y., Zheng, X.: Forensic detection of Gaussian low-pass filtering in digital images. In: Proc. 8th International congress on image and signal processing, Shenyang, China, pp. 819–823 (2015)

  31. Chuang, W., Swaminathan, A., Wu, M.: Tampering identification using empirical frequency response. In: Proc. IEEE Int. conf. on acoustics, speech and signal processing, Taipei, Taiwan, pp. 1517–1520 (2009)

  32. Hwang, J., Rhee, K.: Gaussian filtering detection based on features of residuals in image forensics. In: Proc. IEEE RIVF int. conf. on computing & communication technologies, research, innovation, and vision for the future, Hanoi, Vietnam, pp 153–157 (2016)

  33. Qian, Y., Dong, J., Wang, W., Tan, T.: Deep learning for steganalysis via convolutional neural networks. In: Proc. SPIE, media watermarking, security, and forensics, San Jose, CA, USA, pp. 94090J0–94090J10 (2015)

  34. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: proc. int. conf. on international conference on machine learning, Haifa, Israel, pp. 807–814 (2010)

  35. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proc. int. conf. on international conference on machine learning, Lille, France, pp. 448–456 (2015)

  36. Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC (Grant nos. U1536204, 61772571, 61702429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangui Kang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Kang, X., Shi, Y.Q. et al. A multi-purpose image forensic method using densely connected convolutional neural networks. J Real-Time Image Proc 16, 725–740 (2019). https://doi.org/10.1007/s11554-019-00866-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-019-00866-x

Keywords

Navigation