Advertisement

Mass center direction-based decision method for intraprediction in HEVC standard

  • Narjes Najafabadi
  • Mohammadreza RamezanpourEmail author
Original Research Paper
  • 44 Downloads

Abstract

Increasing the prediction modes and recursive quad-tree structure, can be the reasons for high compression efficiency in high-efficiency video coding (HEVC) standard. For the same reasons, the computational complexity of HEVC is increased compared with the previous standards. One of the parts that impose a high computational load is the intraprediction unit. In this paper, an improved intraprediction mode decision method is presented to accelerate intracoding of HEVC. A mass center direction-based approach is used to find correlation direction of pixels which can effectively eliminate the prediction modes that have low chance to be selected as the best intramode from the rate-distortion optimization computations. According to the founded correlation direction for 4 × 4 blocks, the depth range of coding units can also be reduced to accelerate the intracoding further. The performance of the proposed method evaluated with different test sequences proposed by the joint collaborative team on video coding. The coding results indicate that the proposed method reduces the encoding time significantly as compared with the HM-16.19 reference software with negligible loss of peak signal-to-noise ratio quality.

Keywords

Mass center direction Intracoding Prediction mode HEVC 

Notes

References

  1. 1.
    Lin, C.S., Yang, W.J., Su, C.W.: FITD: fast intra transcoding from H. 264/AVC to high efficiency video coding based on DCT coefficients and prediction modes. J. Vis. Commun. Image Represent. 38, 130–140 (2016).  https://doi.org/10.1016/j.jvcir.2016.03.003 CrossRefGoogle Scholar
  2. 2.
    Kamath, S.S., Aparna, P., Antony, A.: Gradient-oriented directional predictor for HEVC planar and angular intra prediction modes to enhance lossless compression. AEU Int. J. Electron. Commun. 95, 73–81 (2018).  https://doi.org/10.1016/j.aeue.2018.07.037 CrossRefGoogle Scholar
  3. 3.
    de Oliveira, J.F.F., Regis, C.D.M., de Alencar, M.S.: Performance evaluation of the PWSSIM metric for HEVC and H. 264. Procedia Comput. Sci. 65, 115–124 (2015).  https://doi.org/10.1016/j.procs.2015.09.088 CrossRefGoogle Scholar
  4. 4.
    Masera, M., Fiorentin, L.R., Masala, E., Masera, G., Martina, M.: Analysis of HEVC transform throughput requirements for hardware implementations. Signal Process. Image Commun. 57, 173–182 (2017).  https://doi.org/10.1016/j.image.2017.06.001 CrossRefGoogle Scholar
  5. 5.
    Harize, S., Semira, H., Benouaret, M., Doghmane, N.: Hardware implementation and performance evaluation of the HEVC intra-predicted 4 × 4 blocks transforms. Circuits Syst. Signal Process. 36(5), 2050–2074 (2017).  https://doi.org/10.1007/s00034-016-0399-z CrossRefGoogle Scholar
  6. 6.
    Wang, S., Luo, F., Ma, S., Zhang, X., Wang, S., Zhao, D., Gao, W.: Low complexity encoder optimization for HEVC. J. Vis. Commun. Image Represent. 35, 120–131 (2016).  https://doi.org/10.1016/j.jvcir.2015.12.005 CrossRefGoogle Scholar
  7. 7.
    Xu, Z., Min, B., Cheung, R.C.: A fast inter CU decision algorithm for HEVC. Signal Process. Image Commun. 60, 211–223 (2018).  https://doi.org/10.1016/j.image.2017.09.008 CrossRefGoogle Scholar
  8. 8.
    Yao, Y., Li, X., Lu, Y.: Fast intra mode decision algorithm for HEVC based on dominant edge assent distribution. Multimed. Tools Appl. 75(4), 1963–1981 (2016).  https://doi.org/10.1007/s11042-014-2382-7 CrossRefGoogle Scholar
  9. 9.
    Ramezanpour, M., Zargari, F.: Fast CU size and prediction mode decision method for HEVC encoder based on spatial features. Signal Image Video Process. 10(7), 1233–1240 (2016).  https://doi.org/10.1007/s11760-016-0885-6 CrossRefGoogle Scholar
  10. 10.
    Fini, M.R., Zargari, F.: Two stage fast mode decision algorithm for intra prediction in HEVC. Multimed. Tools Appl. 75(13), 7541–7558 (2016).  https://doi.org/10.1007/s11042-015-2675-5 CrossRefGoogle Scholar
  11. 11.
    Antony, A., Sreelekha, G.: Selective intra prediction in HEVC planar and angular modes for efficient near-lossless video compression. Multimed. Tools Appl. 77(1), 1093–1113 (2018).  https://doi.org/10.1007/s11042-016-4309-y CrossRefGoogle Scholar
  12. 12.
    Shen, L., Zhang, Z., An, P.: Fast CU size decision and mode decision algorithm for HEVC intra coding. IEEE Trans. Consum. Electron. 59(1), 207–213 (2013).  https://doi.org/10.1109/TCE.2013.6490261 CrossRefGoogle Scholar
  13. 13.
    Liao, W., Chen, Z.: A fast CU partition and mode decision algorithm for HEVC intra coding. Signal Process. Image Commun. (2018).  https://doi.org/10.1016/j.image.2018.06.003 Google Scholar
  14. 14.
    Lee, D., Jeong, J.: Fast CU size decision algorithm using machine learning for HEVC intra coding. Signal Process. Image Commun. 62, 33–41 (2018).  https://doi.org/10.1016/j.image.2017.12.005 CrossRefGoogle Scholar
  15. 15.
    Chung, B., Yim, C.: Fast intra prediction method by adaptive number of candidate modes for RDO in HEVC. Inf. Process. Lett. 131, 20–25 (2018).  https://doi.org/10.1016/j.ipl.2017.11.005 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tariq, J., Kwong, S.: Adaptive stopping strategies for fast intra mode decision in HEVC. J. Vis. Commun. Image Represent. 51, 1–13 (2018).  https://doi.org/10.1016/j.jvcir.2017.12.008 CrossRefGoogle Scholar
  17. 17.
    Lu, Y., Liu, H., Lin, Y., Yao, Y., Yin, H.: Fast intra coding based on online learning for high efficiency video coding. Optik. 167, 136–143 (2018).  https://doi.org/10.1016/j.ijleo.2018.04.044 CrossRefGoogle Scholar
  18. 18.
    Fernández, D.G., Barrio, D., Botella, A.A., García, G., Prieto, C.M., Hermida, R.: Complexity reduction in the HEVC/H265 standard based on smooth region classification. Digit. Signal Process. 73, 24–39 (2018).  https://doi.org/10.1016/j.dsp.2017.11.001 CrossRefGoogle Scholar
  19. 19.
    Lee, D., Jeong, J.: Fast intra coding unit decision for high efficiency video coding based on statistical information. Sig. Process. Image Commun. 55, 121–129 (2017).  https://doi.org/10.1016/j.image.2017.03.019 CrossRefGoogle Scholar
  20. 20.
    Chen, F., Jin, D., Peng, Z., Jiang, G., Yu, M., Chen, H.: Fast intra coding algorithm for HEVC based on depth range prediction and mode reduction. Multimed. Tools Appl. (2018).  https://doi.org/10.1007/s11042-018-6011-8 Google Scholar
  21. 21.
    Ma, Y., Liu, Z., Wang, X., Cao, S.: Fast intra coding based on CU size decision and direction mode decision for HEVC. Multimed. Tools Appl. (2017).  https://doi.org/10.1007/s11042-017-5074-2 Google Scholar
  22. 22.
    Zhu, W., Yi, Y., Zhang, H., Chen, P., Zhang, H.: Fast mode decision algorithm for HEVC intra coding based on texture partition and direction. J. Real Time Image Process. (2018).  https://doi.org/10.1007/s11554-018-0766-z Google Scholar
  23. 23.
    Heidari, B., Ramezanpour, M.: Reduction of intra-coding time for HEVC based on temporary direction map. J. Real Time Image Process. (2018).  https://doi.org/10.1007/s11554-018-0815-7 Google Scholar
  24. 24.
    Elyousfi, A.: Gravity direction-based ultra-fast intraprediction algorithm for H. 264/AVC video coding. SIViP. 7(1), 53–65 (2013).  https://doi.org/10.1007/s11760-011-0232-x CrossRefGoogle Scholar
  25. 25.
    Bossen F.: Common test condition and software reference con-figurations. Joint Collaborative Team on Video Coding JCTVC-L1100, Geneva (2013)Google Scholar
  26. 26.
    Bjontegaard, G.: Calculation of average PSNR differences between RD_curves. In: Presented at the 13th VCEG-M33 Meeting, Austin (2001)Google Scholar
  27. 27.
    JVT Test Model Ad Hoc Group.: Evaluation Sheet for Motion Estimation. Draft version 4 (2003)Google Scholar
  28. 28.
    Hosseini, E., Pakdaman, F., Hashemi, M.R., Ghanbari, M.: A computationally scalable fast intra coding scheme for HEVC video encoder. Multimed. Tools Appl. (2018).  https://doi.org/10.1007/s11042-018-6713-y Google Scholar
  29. 29.
    Correa, G., Assuncao, P.A., Agostini, L.V., da Silva Cruz, L.A.: Fast HEVC encoding decisions using data mining. IEEE Trans. Circuits Syst. Video Technol. 25(4), 660–673 (2015).  https://doi.org/10.1109/TCSVT.2014.2363753 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Computer Engineering, Najafabad BranchIslamic Azad UniversityNajafabadIran
  2. 2.Department of Computer Engineering, Mobarakeh BranchIslamic Azad UniversityMobarakehIran

Personalised recommendations