Advertisement

Journal of Real-Time Image Processing

, Volume 16, Issue 1, pp 193–225 | Cite as

Real-time rate distortion-optimized image compression with region of interest on the ARM architecture for underwater robotics applications

  • Eduardo M. Rubino
  • Alberto J. ÁlvaresEmail author
  • Raúl Marín
  • Pedro J. Sanz
Special Issue Paper
  • 279 Downloads

Abstract

This paper proposes the use of a real-time progressive image compression and region of interest algorithm for the ARM processor architecture. This algorithm is used for the design of an underwater image sensor for an autonomous underwater vehicle for intervention, under a highly constrained available bandwidth scenario, allowing for a more agile data exchange between the vehicle and a human operator supervising the underwater intervention. For high compression ratios (smaller output size), execution time is dominated by the transformation algorithm, which plays a progressively smaller role as the compression ratio gets smaller (larger output size). A novel progressive rate distortion-optimized image compression algorithm based on the discrete wavelet transform (DWT) is presented, with special emphasis on a novel minimal time parallel DWT algorithm, which allows full memory bandwidth saturation using only a few cores of a modern multicore embedded processor. The paper focuses in a novel efficient inplace, multithreaded, and cache-friendly parallel 2-D wavelet transform algorithm, based on the lifting transform using the ARM Architecture. In order to maximize the cache utilization and consequently minimize the memory bus bandwidth use, the threads compete to work on a small memory area, maximizing the chances of finding the data in the cache. Their synchronization is done with very low overhead, without the use of any locks and relying solely on the basic compare-and-swap atomic primitive. An implementation in C programming language with and without the use of vector instructions (single instruction multiple data) is provided for both, single (serial) and multi-(parallel) threaded single-loop DWT implementations, as well as serial and parallel naive implementations using linear (row order) and strided (column order) memory access patterns for comparison. Results show a significant improvement over the single-threaded optimized implementation and a much greater improvement over both, the single- and multi-threaded naive implementations, reaching minimal running time depending on the memory access pattern, the number of processor cores, and the available memory bus bandwidth, i.e., it becomes memory bound using the minimum number of memory accesses. Due to memory saturation, the inplace 2-D DWT transform can be executed in the same time as a 1-D DWT transform or as an inplace memory block copy.

Keywords

Progressive image compression Region of interest (ROI) Parallel wavelet transforms Arm architecture Underwater robotics applications 

Notes

Acknowledgements

This work was partly supported by the Spanish Ministry under grants DPI2014-57746-C3 (MERBO-TS Project) and DPI2017-86372-C3-1-R (TWINBOTS), by Universitat Jaume I grants P1-1B2015-68 (MASUMIA), E-2015-24, PREDOC/2012/47 and PREDOC/2013/46, by Generalitat Valenciana grant ACIF/2014/298 and (PROMETEO/2016/066), and by the Brazil CNPQ and FAP/DF.

References

  1. 1.
    Sanz, P.J., Pealver, A., Sales, J., Fernndez, J.J., Prez, J., Fornas, D., Garca, J.C., Marin, R.: Multipurpose underwater manipulation for archaeological intervention. In: Sixth International Workshop on Marine Technology (MARTECH’15), Cartagena, Spain (2015)Google Scholar
  2. 2.
    Centelles, D., Moscoso, E., Vallicrosa, G., Palomeras, N., Sales, J., Mart, J.V., Marín, R., Ridao, P., Sanz, P.J.: Wireless HROV control with compressed visual feedback over an acoustic link. In: OCEANS 2017—Aberdeen, IEEE, pp. 1–7 (2017).  https://doi.org/10.1109/OCEANSE.2017.8084979
  3. 3.
    Sanz, P.J., Prats, M., Ridao, P., Ribas, D., Oliver, G., Orti, A.: Recent progress in the RAUVI project. A reconfigurable autonomous underwater vehicle for intervention. In: 52-th International Symposium ELMAR-2010, Zadar, Croatia, pp. 471–474 (2010)Google Scholar
  4. 4.
    Sanz, P.J., Peñalver, A., Sales, J., Fornas, D., Fernández, J.J., Perez, J., Bernabé, J.A.: GRASPER: a multisensory based manipulation system for underwater operations. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Manchester, UK. IEEE, New York (2013)Google Scholar
  5. 5.
    Sanz, P.J., Ridao, P., Oliver, G., Casalino, G., Petillot, Y., Silvestre, C., Melchiorri, C., Turetta, A.: TRIDENT: an European project targeted to increase the autonomy levels for underwater intervention missions. In: OCEANS13 MTS/IEEE Conference, San Diego, CA, pp. 1–10 (2013)Google Scholar
  6. 6.
    Kaeli, J.W.: Computational strategies for understanding underwater optical image datasets. Thesis, Massachusetts Institute of Technology, p. 135 (2013)Google Scholar
  7. 7.
    Suzuki, M., Sasaki, T.: Digital acoustic image transmission system for deep sea research submersible. In: Proceedings of IEEE Oceans’92 Conference, pp. 567–570 (1992)Google Scholar
  8. 8.
    Gomes, J., Barroso, V., Ayela, G., Coince, P.: An overview of the ASIMOV acoustic communication system. In: OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No.00CH37158), vol. 3, pp. 1633–1637 (2000)Google Scholar
  9. 9.
    Hoag, D.F., Ingle, V.K., Gaudette, R.J.: Low-bit-rate coding of underwater video using wavelet-based compression algorithms. IEEE J. Ocean. Eng. 22(2), 393–400 (1997)CrossRefGoogle Scholar
  10. 10.
    Negahdaripour, S., Khamene, A.: Motion-based compression of underwater video imagery for the operations of unmanned submersible vehicles. Comput. Vis. Image Underst. 79(1), 162–183 (2000)CrossRefGoogle Scholar
  11. 11.
    Pelekanakis, K.: Design and analysis of a high-rate acoustic link for underwater video transmission. Thesis, Massachusetts Institute of Technology, p. 75 (2004)Google Scholar
  12. 12.
    Walker, J.S., Nguyen, T.Q., Chen, Y.-J.: A low-power, low-memory system for wavelet-based image compression. Opt. Eng. Res. Signposts 5, 111–125 (2003)Google Scholar
  13. 13.
    Mallat, S.: A Wavelet Tour of Signal Processing. The Sparse Way, 3rd edn, p. 805. Elsevier, Amsterdam (2009)zbMATHGoogle Scholar
  14. 14.
    Murphy, C.A.: Progressively communicating rich telemetry from autonomous underwater vehicles via relays. Thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, p. 75 (2004)Google Scholar
  15. 15.
    Senapati, R.K., Pati, U.C., Mahapatra, K.K.: Listless block-tree set partitioning algorithm for very low bit rate embedded image compression. AEU Int. J. Electron. Commun. 66(12), 985–995 (2012)CrossRefGoogle Scholar
  16. 16.
    Zhang, Y., Negahdaripour, S., Li, Q.: Low bit-rate compression of underwater imagery based on adaptive hybrid wavelets and directional filter banks. Signal Process. Image Commun. 47, 96–114 (2016)CrossRefGoogle Scholar
  17. 17.
    Esmaiel, H.A.H.: Advanced multi-band modulation technology for underwater communication systems. Doctoral Thesis, University of Tasmania (2015)Google Scholar
  18. 18.
    Jiang, D., Esmaiel, H.: Optimum bit rate for image transmission over underwater acoustic channel. J. Electr. Electron. Eng. 2(4), 64–74 (2014)CrossRefGoogle Scholar
  19. 19.
    Tomasi, B., Toni, L., Casari, P., Preisig, J., Zorzi, M.: A study on the spiht image coding technique for underwater acoustic communications. In: Proceedings of the Sixth ACM International Workshop on Underwater Networks, WUWNet ’11, New York, NY, USA, pp. 9:1–9:8. ACM, New York (2011)Google Scholar
  20. 20.
    Santoso, T.B., Wirawan, Hendrantoro, G.: Image transmission with OFDM technique in underwater acoustic environment. In: 2012 7th International Conference on Telecommunication Systems, Services, and Applications (TSSA), pp. 37–41 (2012)Google Scholar
  21. 21.
    Eastwood, R.L., Freitag, L.E., Catipovic, J.A.: Compression techniques for improving underwater acoustic transmission of images and data. In: OCEANS 96 MTS/IEEE Conference Proceedings. The Coastal Ocean—Prospects for the 21st Century, p 67 suppl. (1996)Google Scholar
  22. 22.
    Sun, Y., Li, R., Cao, X.: Image compression method of terrain based on Antonini wavelet transform. In: Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS ’05, vol. 2 (2005)Google Scholar
  23. 23.
    Zhang, L.-B.: A New Region of Interest Image Coding for Narrowband Network: Partial Bitplane Alternating Shift, pp. 425–432. Springer, Berlin (2005)Google Scholar
  24. 24.
    Rubino, E.M., Sales, J., Centelles, D., Sanz, P.J., Marn, R., Marti, J.V.: Image compression with region of interest for underwater robotic archaeological applications. In: XXXVI Jornadas de Automtica, Bilbao, Spain (2015)Google Scholar
  25. 25.
    Rubino, E.M., Centelles, D., Sales, J., Martí, J.V., Marín, R., Sanz, P.J., Álvares, A.J.: Underwater radio frequency image sensor using progressive image compression and region of interest. J. Braz. Soc. Mech. Sci. Eng. 39(10), 4115–4134 (2017)CrossRefGoogle Scholar
  26. 26.
    Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl. 4(3), 247–269 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Barina, D.: Lifting scheme cores for wavelet transform. Thesis, Brno University of Technology, Brno, p. 80 (2015)Google Scholar
  28. 28.
    Varbanescu, A.L.: On the effective parallel programming of multi-core processors. Thesis, Universitatea Politehnica Bucuresti, Romania, p. 217 (2010)Google Scholar
  29. 29.
    Colom-Palero, R.J., Gadea-Girones, R., Ballester-Merelo, F.J., Martnez-Peiro, M.: Flexible architecture for the implementation of the two-dimensional discrete wavelet transform (2D-DWT) oriented to FPGA devices. Microprocess. Microsyst. 28(9), 509–518 (2004)CrossRefGoogle Scholar
  30. 30.
    Xionga, C., Houa, J., Tianb, J., Liub, J.: Efficient array architectures for multi-dimensional lifting-based discrete wavelet transforms. Signal Process. 87, 1089–1099 (2007)CrossRefGoogle Scholar
  31. 31.
    Bozinovic, R., Markovic, Z.: Fast DWT-based intermediate video codec optimized for massively parallel architecture. US Patent 9,451,291, 20 Sept 2016Google Scholar
  32. 32.
    Jalba, A.C., van der Laan, W.J., Roerdink, J.B.T.M.: Accelerating wavelet lifting on graphics hardware using CUDA. IEEE Trans. Parallel Distrib. Syst. 22, 132–146 (2011)CrossRefGoogle Scholar
  33. 33.
    Barina, D., Klima, O., Zemcik, P.: Single-loop software architecture for JPEG 2000. In: Data Compression Conference (DCC) (2016)Google Scholar
  34. 34.
    Barina, D., Zemcik, P.: Vectorization and parallelization of 2-D wavelet lifting. J. Real Time Image Process. 15, 1–13 (2015)Google Scholar
  35. 35.
    Lai, B.-C.C., Li, K.-C., Li, G.-R., Chiang, C.-H.: Self adaptable multithreaded object detection on embedded multicore systems. J. Parallel Distrib. Comput. 78, 25–38 (2015)CrossRefGoogle Scholar
  36. 36.
    Hutcheson, A., Natoli, V.: Memory bound vs. compute bound: a quantitative study of cache and memory bandwidth in high performance applications. Technical report, Stone Ridge Technology, Charlottesville, Virginia (2011)Google Scholar
  37. 37.
    McCalpin, J.D.: Memory bandwidth and machine balance in current high performance computers. IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, pp. 19–25 (1995)Google Scholar
  38. 38.
    Chaver, D., Tenllado, C., Piñuel, L., Prieto, M., Tirado, F.: 2-D Wavelet Transform Enhancement on General-Purpose Microprocessors: Memory Hierarchy and SIMD Parallelism Exploitation, pp. 9–21. Springer, Berlin (2002)zbMATHGoogle Scholar
  39. 39.
    Chaver, D., Tenllado, C., Piñuel, L., Prieto, M., Tirado, F.: Wavelet Transform for Large Scale Image Processing on Modern Microprocessors, pp. 549–562. Springer, Berlin (2003)zbMATHGoogle Scholar
  40. 40.
    Barina, D., Klima, O., Zemcik, P.: Minimum memory vectorisation of wavelet lifting. In: Advanced Concepts for Intel. Vision Systems (ACIVS), pp. 91–101 (2013)Google Scholar
  41. 41.
    Pelekanakis, C., Stojanovic, M., Freitag, L.: High rate acoustic link for underwater video transmission. In: OCEANS 2003. Proceedings, vol. 2, pp. 1091–1097 (2003)Google Scholar
  42. 42.
    Ribas, J., Sura, D., Stojanovic, M.: Underwater wireless video transmission for supervisory control and inspection using acoustic OFDM. OCEANS 2010, 1–9 (2010)Google Scholar
  43. 43.
    Farr, N., Bowen, A., Ware, J., Pontbriand, C., Tivey, M.: An integrated, underwater optical/acoustic communications system. In: OCEANS 2010 IEEE—Sydney, pp. 1–6 (2010)Google Scholar
  44. 44.
    Stojanovic, M., Preisig, J.: Underwater acoustic communication channels: propagation models and statistical characterization. IEEE Commun. Mag. 47(1), 84–89 (2009)CrossRefGoogle Scholar
  45. 45.
    Kebkal, O., Komar, M., Kebkal, K., Bannasch, R.: D-MAC: Media access control architecture for underwater acoustic sensor networks. In: OCEANS 2011 IEEE—Spain, pp. 1–8 (2011)Google Scholar
  46. 46.
    Fernndez, J.J., Prez, J., Pealver, A., Sales, J., Fornas, D., Sanz, P.J.: Benchmarking using UWSim, Simurv and ROS: an autonomous free floating dredging intervention case study. In: OCEANS 2015—Genoa, pp. 1–7 (2015)Google Scholar
  47. 47.
    Rubino, E.M.: Extremely low and variable bandwidth image compression with region of interest applied to real time underwater robotic interventions. Doctoral Thesis, University of Jaume I (2018)Google Scholar
  48. 48.
    Rubino, E.M., lvares, A.J., Sanz, R., Marn, R.: A general scheme for finding the static rate–distortion optimized ordering for the bits of the coefficients of all subbands of an N-level dyadic biorthogonal DWT. Signal Process. Image Commun. 67, 210–230 (2018)CrossRefGoogle Scholar
  49. 49.
    Xiong, Z., Guleryuz, O.G., Orchard, M.T.: A DCT-based embedded image coder. IEEE Signal Process. Lett. 3(11), 289–290 (1996)CrossRefGoogle Scholar
  50. 50.
    Taubman, D., Ordentlich, E., Weinberger, M., Seroussi, G.: Embedded block coding in JPEG 2000. Signal Process. Image Commun. 17(1), 49–72 (2002)CrossRefGoogle Scholar
  51. 51.
    Shapiro, J.M.: Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Process. 41(12), 3445–3462 (1993)CrossRefzbMATHGoogle Scholar
  52. 52.
    Said, A., Pearlman, W.A.: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 6(3), 243–250 (1996)CrossRefGoogle Scholar
  53. 53.
    Pearlman, W.A., Islam, A., Nagaraj, N., Said, A.: Efficient, low-complexity image coding with a set-partitioning embedded block coder. IEEE Trans. Circuits Syst. Video Technol. 14(11), 1219–1235 (2004)CrossRefGoogle Scholar
  54. 54.
    Wheeler, F.W., Pearlman, W.A.: Combined spatial and subband block coding of images. In: 2000 International Conference on Image Processing, 2000. Proceedings, vol. 3, pp. 861–864 (2000)Google Scholar
  55. 55.
    Moinuddin, A.A., Khan, E.: Wavelet based embedded image coding using unified zero-block-zero-tree approach. In: 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings, vol. 2, p. II (2006)Google Scholar
  56. 56.
    Hong, E.S., Ladner, R.E.: Group testing for image compression. IEEE Trans. Image Process. 11(8), 901–911 (2002)CrossRefGoogle Scholar
  57. 57.
    Cohen, A., Daubechies, I., Feauveau, J.-C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45(5), 485–560 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Shahbahrami, A., Juurlink, B., Vassiliadis, S.: Implementing the 2-D wavelet transform on SIMD-enhanced general-purpose processors. IEEE Trans. Multimedia 10(1), 43–51 (2008)CrossRefGoogle Scholar
  59. 59.
    McCalpin, J.D.: Stream: Sustainable memory bandwidth in high performance computers. Technical report, University of Virginia, Charlottesville, Virginia, 1991–2007. A continually updated technical report. http://www.cs.virginia.edu/stream/. Accessed 1 Jan 2018
  60. 60.
    Kutil, R.: A single-loop approach to simd parallelization of 2d wavelet lifting. In: 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06) (2006)Google Scholar
  61. 61.
    Barina, D., Kula, M., Zemcik, P.: Parallel wavelet schemes for images. J. Real Time Image Process. (2016).  https://doi.org/10.1007/s11554-016-0646-3 Google Scholar
  62. 62.
    Ikuzawa, T., Ino, F., Hagihara, K.: Reducing memory usage by the lifting-based discrete wavelet transform with a unified buffer on a GPU. J. Parallel Distrib. Comput. 9394, 44–55 (2016)CrossRefGoogle Scholar
  63. 63.
    Karp, A., Collard, J.F.: Synchronization of threads in a multithreaded computer program. US Patent App. 10/870,721, 22 Dec 2005Google Scholar
  64. 64.
    Gregg, B.: Prentice hall, 1st edn. In: Systems Performance Enterprise and the Cloud, p. 1128 (2014)Google Scholar
  65. 65.
    Ruggiero, J.: Intel corporation, report. In: Measuring Cache and Memory Latency and CPU to Memory Bandwidth for use with Intel Architecture, p. 14 (2008)Google Scholar
  66. 66.
    Intel: Intel corporation, manual. In: Intel 64 and IA-32 Architectures Software Developers Manual, p. 4684 (2016)Google Scholar
  67. 67.
    Rubino, E.M., Alvares, A.J., Prades, R.M., Valero, P.S.: A novel minimum time parallel 2-D discrete wavelet transform algorithm for general purpose processors. In: 2017 46th International Conference on Parallel Processing (ICPP), pp. 553–562 (2017)Google Scholar
  68. 68.
    Rehna, V.J., Jeya Kumar, M.K.: Wavelet based image coding schemes: a recent survey. CoRR (2012). arXiv:abs/1209.2515
  69. 69.
    Adams, M.D., Kossentini, F.: Jasper: a software-based JPEG-2000 codec implementation. In: 2000 International Conference on Image Processing, 2000. Proceedings, vol. 2, pp. 53–56 (2000)Google Scholar
  70. 70.
    Tian, J., Wells, R.O.: A lossy image codec based on index coding. In: Data Compression Conference, 1996. DCC ’96. Proceedings, p. 456 (1996)Google Scholar
  71. 71.
    Tian, J., Wells, R.O.: Embedded Image Coding Using Wavelet Difference Reduction, pp. 289–301. Springer US, Boston (2002)Google Scholar
  72. 72.
    Walker, J.S., Nguyen, T.Q.: Adaptive scanning methods for wavelet difference reduction in lossy image compression. In: Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101), vol. 3, pp. 182–185 (2000)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Eduardo M. Rubino
    • 1
  • Alberto J. Álvares
    • 2
    Email author
  • Raúl Marín
    • 1
  • Pedro J. Sanz
    • 1
  1. 1.Computer Science and Engineering DepartmentUniversity Jaume-ICastellón de la PlanaSpain
  2. 2.Department of Mechanical EngineeringUniversity of BrasiliaBrasíliaBrazil

Personalised recommendations