Heterogeneous SoC-based acceleration of MPEG-7 compliance image retrieval process

  • Romina Molina
  • Julio Dondo Gazzano
  • Fernando Rincon
  • Veronica Gil-Costa
  • Jesus Barba
  • Ricardo Petrino
  • Juan Carlos Lopez
Special Issue Paper
  • 9 Downloads

Abstract

With the growing amount of multimedial content over the internet and broadcast systems, mechanisms for efficient information organization, manipulation and transmission are becoming indispensable. Optimization of the multimedia search and retrieval processes is nowadays an important area of development due to the difficulty to browse, filter and manage that big amount of data. The adoption of the MPEG-7 standard has a significant importance to simplify the image retrieval process. However, performance issues are still relevant when the retrieval must be accomplished in real time. This work presents an innovative and efficient approach of a Content-Based Retrieval Process using metric spaces implemented in heterogeneous resources according to the demand of computational power. Several implementations were made and comparative results are shown evidencing the benefits of the proposed approach.

Keywords

Image retrieval FPGA CBIR Hardware implementation Image processing 

Notes

Acknowledgements

This research was supported by the Spanish Ministry of Economy and Competitiveness under the project REBECCA, (TEC2014-58036-C4-1-R) and by the Regional Government of Castilla-La Mancha under the project SAND, (PEII-2014-046-P)

References

  1. 1.
    Shih-Fu, C., Sikora, T., Purl, A.: Overview of the MPEG-7 standard. Circuits Syst. Video Technol. 11, 688–695 (2001)CrossRefGoogle Scholar
  2. 2.
    Sezan, I., van Beek, P.: MPEG-7 standard and its expected role in development of new information appliances. Consumer Electronics, 2000. ICCE. 2000 Digest of Technical Papers, pp. 274–275 (2000)Google Scholar
  3. 3.
    Rui, Y., Huang, T.S., Chang, S.F.: Digital image/video library and MPEG-7: standardization and research issues. IEEE Int. Conf. Acoust. Speech. Signal Process. 6, 3785–3788 (1998)Google Scholar
  4. 4.
    Vinod, V.V., Lindsay, A.: MPEG-7: its impact on research, industry, and the consumer. In: Proceedings IEEE International Conference on Multimedia Computing and Systems, pp. 406–407. Florence (1999)Google Scholar
  5. 5.
    Manjunath, B.S., Salembier, Philippe, Sikora, Thomas: MPEG-4: a multimedia compression standard for interactive applications and services. ISBN 0471, 486787 (2002)Google Scholar
  6. 6.
    Sikora, T.: MPEG digital video-coding standards. Signal Process. Mag. 14, 82–100 (1997)CrossRefGoogle Scholar
  7. 7.
    Sikora, T.: MPEG digital audio-and video-coding standards. Signal Process. Mag. 14, 58 (1997)CrossRefGoogle Scholar
  8. 8.
    Schafer, R.: MPEG-7 multimedia content description interface. Electron. Commun. Eng. J. 10, 253–262 (1998)CrossRefGoogle Scholar
  9. 9.
    Bleschke, M., Madonski, R., Rudnicki, R.: Image retrieval system based on combined MPEG-7 texture and colour descriptors. In: MIXDES-16th International Conference Mixed Design of Integrated Circuits & Systems, pp. 635–639. Lodz (2009)Google Scholar
  10. 10.
    Shao, H., Wu, Y., Cui, W., Zhang, J.: Image retrieval based on MPEG-7 dominant color descriptor. In: The 9th International Conference for Young Computer Scientists, pp. 753–757. Hunan (2008)Google Scholar
  11. 11.
    Quackenbush, S., Lindsay, A.: Overview of MPEG-7 audio. IEEE Trans. Circuits Syst. Video Technol. 11(6), 725–729 (2001)CrossRefGoogle Scholar
  12. 12.
    Sikora, T.: The MPEG-7 color layout descriptor: a compact image feature description for high-speed image/video segment retrieval. Int. Conf. Image Process. 1, 674–677 (2001)Google Scholar
  13. 13.
    Cieplinski, L.: The MPEG-7 color descriptors, pp. 11–20. Springer-Verlag GmbH, New York (2001)MATHGoogle Scholar
  14. 14.
    Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín. J.: Searching in metric spaces. ACM Comput. Surv. 33(3), 273–321 (2001)CrossRefGoogle Scholar
  15. 15.
    Sharm, M., Batra, A.: Analysis of distance measures in content based image retrieval. Global J. Comput. Sci. Technol. G Interdiscipl. 14(2), 10–16 (2014)Google Scholar
  16. 16.
    Malik, F., Baharudin, B.: Analysis of distance metrics in content-based image retrieval using statistical quantized histogram texture features in the DCT domain. J. King Saud Univ. Comput. Inf. Sci. 25(2), 207–218 (2013)Google Scholar
  17. 17.
    Brisaboa, N.R., Farina, A., Pedreira, O., Reyes, N.: Similarity search using sparse pivots for efficient multimedia information retrieval. In: Eighth IEEE International Symposium on Multimedia (ISM’06), pp. 881–888. San Diego, CA (2006)Google Scholar
  18. 18.
    Krishnamachari, S., Abdel-Mottaleb, M.: Hierarchical clustering algorithm for fast image retrieval. In: Proceedings SPIE 3656, Storage and Retrieval for Image and Video Databases VII, pp. 427–435 (1998)Google Scholar
  19. 19.
    Cai, Y.: Image retrieval using boosting algorithm. http://www.stat.ucla.edu/~yizheng.cai/report.pdf. Accessed 14 May 2018
  20. 20.
    Pilevar, A.H.: CBMIR: Content-based image retrieval algorithm for medical image databases. J. Med. Signals Sens. 1(1), 12–18 (2011)Google Scholar
  21. 21.
    Liang, C., Wu, C., Zhou, X., Cao, W., Wang, S., Wang, L.: An image semantic retrieval system design and realization. Proceedings of 2005 International conference on machine learning and cybernetics, vol. 9, pp. 5284–5289 (2005)Google Scholar
  22. 22.
    Zhou, X.S., Huang, T.S.: CBIR: from low-level features to high-level semantics. In: Proceedings SPIE 3974, Image and Video Communications and Processing, pp. 1–6 (2000)Google Scholar
  23. 23.
    Navarro, G., Reyes, N.: Fully dynamic spatial approximation trees. In: Symposium on String Processing and Information Retrieval, pp. 254–270 (2002)Google Scholar
  24. 24.
    Navarro, G., Reyes, N.: Dynamic spatial approximation trees for massive data. In: Second International Workshop on Similarity Search and Applications, pp. 81–88. Prague (2009)Google Scholar
  25. 25.
    Burstein, P., Smith, A.J.: Efficient search in file-sharing networks. International Conference on Parallel and Distributed Systems, pp. 1–9. Hsinchu (2007)Google Scholar
  26. 26.
    Gil-Costa, V., Marin, M., Reyes, N.: Parallel query processing on distributed clustering indexes. J. Discret. Algorithms 7(1), 3–17 (2009)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Papadopoulos, A., Manolopoulos, Y.: Distributed processing of similarity queries. J. Distrib. Parallel Databases 9(1), 1573–1578 (2001)CrossRefMATHGoogle Scholar
  28. 28.
    Batko, M., Novak, D., Falchi, F., Zezula, P.: Scalability comparison of peerto-peer similarity search structures. Future Gener. Comput. Syst. 24(8), 834–848 (2008)CrossRefGoogle Scholar
  29. 29.
    Catalyurek, U.V., Boman, E.G., Devine, K.D., Bozdag, D., Heaphy, R.T., Riesen, L.A.: A repartitioning hypergraph model for dynamic load balancing. J. Parallel Distrib. Comput. 69(8), 711–724 (2009)CrossRefGoogle Scholar
  30. 30.
    Marin, M., Gil-Costa, V., Uribe, R.: Hybrid index for metric space databases. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) Computational Science—ICCS 2008. Lecture Notes in Computer Science, vol 5101, pp. 327–336. Springer, Berlin, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Balasubramani, R., Kannan, V.: Efficient use of MPEG-7 color layout and edge histogram descriptors in CBIR systems. Global J. Comput. Sci. Technol. 5(5), 157–163 (2009)Google Scholar
  32. 32.
    Kim, J.-H., Lim, H.-Y., Kang, D.-S.: An implementation of the video retrieval system by video segmentation. In: 14th Asia-Pacific Conference on Communications, pp. 1–5. Tokyo (2008)Google Scholar
  33. 33.
    Sniatala, P., Kapela, R., Rudnicki, R., Rybarczyk, A.: Efficient hardware architectures of selected MPEG-7 color descriptors. In: 15th European Signal Processing Conference, pp. 1672–1675. Poznan (2007)Google Scholar
  34. 34.
    Pandey, J.G., Karmakar, A., Shekhar, C., Gurunarayanan, S.: An FPGA-based architecture for local similarity measure for image/video processing applications. In: 28th International Conference on VLSI Design (VLSID), pp. 339–344. Bangalore (2015)Google Scholar
  35. 35.
    Chikhi, R., Derrien, S., Noumsi, A., Quinton, P.: Combining flash memory and FPGAs to efficiently implement a massively parallel algorithm for content-based image retrieval. Reconfigurable computing: architectures, tools and applications, third international workshop proceedings, pp. 247–258 (2007)Google Scholar
  36. 36.
    Pedraza, C., Castillo, E., Castillo, J., Bosque, J.L., Martinez, J.I., Robles, O.D., Cano, J., Huerta, P.: Content-based image retrieval algorithm acceleration in a low-cost reconfigurable FPGA cluster. J. Syst. Architect. 56(11), 633640 (2010)CrossRefGoogle Scholar
  37. 37.
    Liang, Chen, Wu, Chenlu, Zhou, Xuegong, Cao, Wei, Wang, Shengye, Wang, Lingli: An FPGA-cluster-accelerated Match engine for content-based image retrieval. International Conference on Field-Programmable Technology (FPT), pp. 422–425 (2013)Google Scholar
  38. 38.
    Bay, Herbert, Ess, Andreas, Tuytelaars, Tinne, Van Gool, Luc: Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  39. 39.
  40. 40.
    Bossard, L., Guillaumin, M., Van Gool, L.: Food-101—mining discriminative components with random forests. European conference on computer vision (2014). http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz. Accessed June 2016

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National University of San LuisSan LuisArgentine
  2. 2.University of Castilla-La ManchaCiudad RealSpain

Personalised recommendations