Skip to main content
Log in

A suite of parallel algorithms for efficient band selection from hyperspectral images

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

The analysis of hyperspectral images is usually very heavy from the computational point-of-view, due to their high dimensionality. In order to avoid this problem, band selection (BS) has been widely used to reduce the dimensionality before the analysis. The aim is to extract a subset of the original bands of the hyperspectral image, preserving most of the information contained in the original data. The BS technique can be performed by prioritizing the bands on the basis of a score, assigned by specific criteria; in this case, BS turns out in the so-called band prioritization (BP). This paper focuses on BP algorithms based on the following parameters: signal-to-noise ratio, kurtosis, entropy, information divergence, variance and linearly constrained minimum variance. In particular, an optimized C serial version has been developed for each algorithm from which two parallel versions have been derived using OpenMP and NVIDIA’s compute unified device architecture. The former is designed for a multi-core CPU, while the latter is designed for a many-core graphics processing unit. For each version of these algorithms, several tests have been performed on a large database containing both synthetic and real hyperspectral images. In this way, scientists can integrate the proposed suite of efficient BP algorithms into existing frameworks, choosing the most suitable technique for their specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chang, C.-I., Wang, Su: Constrained band selection for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 44(6), 1575–1585 (2006)

    Article  Google Scholar 

  2. Mausel, P.W., Kramber, W.J., Lee, J.K.: Optimum band selection for supervised classification of multispectral data. Photogramm. Eng. Remote Sens. 56(1), 55–60 (1990)

    Google Scholar 

  3. Stearns, S.D., Wilson, B.E., Peterson, J.R.: Dimensionality reduction by optimal band selection for pixel classification of hyperspectral imagery. In: Applications of Digital Image Processing XVI, SPIE, vol. 2028, pp. 118–127 (1993)

  4. Chang, C.-I., Du, Q., Sun, T.S., Althouse, M.L.G.: A joint band prioritization and band decorrelation approach to band selection for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 37(6), 2631–2641 (1999)

    Article  Google Scholar 

  5. Gong, M., Zhang, M., Yuan, Y.: Unsupervised band selection based on evolutionary multiobjective optimization for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 54(1), 544–557 (2016)

    Article  Google Scholar 

  6. Sun, K., Geng, X., Ji, L., Lu, Y.: A new band selection method for hyperspectral image based on data quality. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(6), 2697–2703 (2014)

    Article  Google Scholar 

  7. Jia, S., Tang, G., Zhu, J., Li, Q.: A novel ranking-based clustering approach for hyperspectral band selection. IEEE Trans. Geosci. Remote Sens. 54(1), 88–102 (2016)

    Article  Google Scholar 

  8. Wang, S., Chang, C.-I.: Band prioritization for hyperspectral imagery. In: Proceedings of SPIE 6302, Imaging Spectrometry XI, 63020I, https://doi.org/10.1117/12.681658 (2006)

  9. Petaccia, G., Leporati, F., Torti, E.: OpenMP and CUDA simulations of Sella Zerbino Dam break on unstructured grids. Comput. Geosci. 20(5), 1123–1132 (2016)

    Article  MathSciNet  Google Scholar 

  10. Torti, E., Acquistapace, M., Danese, G., Leporati, F., Plaza, A.: Real-time identification of hyperspectral subspaces. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(6), 2680–2687 (2014)

    Article  Google Scholar 

  11. Barberis, A., Danese, G., Leporati, F., Plaza, A., Torti, E.: Real-time implementation of the vertex component analysis algorithm on GPUs. IEEE Geosci. Remote Sens. Lett. 10(2), 251–255 (2013)

    Article  Google Scholar 

  12. Torti, E., Danese, G., Leporati, F., Plaza, A.: A hybrid CPU–GPU real-time hyperspectral unmixing chain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(2), 945–951 (2016)

    Article  Google Scholar 

  13. Bernabé, S., Botella, G., Martín, G., Prieto-Matias, M., Plaza, A.: Parallel implementation of a full hyperspectral unmixing chain using OpenCL. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(6), 2452–2461 (2017)

    Article  Google Scholar 

  14. Wu, Z., Shi, L., Li, J., Wang, Q., Sun, L., Wei, Z., Plaza, J., Plaza, A.: GPU parallel implementation of spatially adaptive hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. PP(99), 1–13 (2017)

    Google Scholar 

  15. NVIDIA Corp.: NVIDIA Kepler GK110 architecture whitepaper. https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf. Accessed Feb 2017

  16. Nascimento, J.M.P., Bioucas-Dias, J.M.: Hyperspectral subspace identification. IEEE Trans. Geosci. Remote Sens. 46(8), 1445–2435 (2008)

    Google Scholar 

  17. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  18. Torti, E., Fontanella, A., Plaza, A.: Parallel real-time virtual dimensionality estimation for hyperspectral images. J. Real-Time Image Proc. (2017). https://doi.org/10.1007/s11554-017-0703-6

    Article  Google Scholar 

  19. Sánchez, S., Plaza, A.: Fast determination of the number of endmembers for real-time hyperspectral unmixing on GPUs. J. Real-Time Image Proc. 9(3), 397–405 (2014)

    Article  Google Scholar 

  20. Rossi, A., Acito, N., Diani, M., Corsini, G.: RX architectures for real-time anomaly detection in hyperspectral images. J. Real-Time Image Proc. 9(3), 503–517 (2014)

    Article  Google Scholar 

  21. Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G., Aronsson, M., Chippendale, B.J., Faust, J.A., Pavri, B.E., Chovit, C.J., Solis, M., Olah, M.R., Williams, O.: Imaging spectroscopy and the airborne visible/infrared imaging spectrometer. Remote Sens. Environ. 65(3), 227–248 (1998)

    Article  Google Scholar 

  22. Yang, H., Du, Q.: Fast band selection for hyperspectral imagery. In: 2011 IEEE 17th international conference on parallel and distributed systems, Tainan, pp. 1048–1051 (2011)

  23. Zheng, J., Zhao, L., Li, X., Zhou, X., Li, J.: GPU-based acceleration of the hyperspectral band selection by SNR estimation using wavelet transform. In: Proceedings of SPIE 9263, multispectral, hyperspectral, and ultraspectral remote sensing technology, techniques and applications V (2014)

  24. Yang, H., Du, Q., Chen, G.: Unsupervised hyperspectral band selection using graphics processing units. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 4(3), 660–668 (2011)

    Article  Google Scholar 

  25. Wei, W., Du, Q., Younan, N.H.: Fast supervised hyperspectral band selection using graphics processing unit. J. Appl. Remote Sens. 6(1), 061504 (2012). https://doi.org/10.1117/1.jrs.6.061504

    Article  Google Scholar 

  26. Chang, Y.L., Fang, J.P., Benediktsson, J.A., Chang, L., Ren, H., Chen, K.S.: Band selection for hyperspectral images based on parallel particle swarm optimization schemes. In: 2009 IEEE international geoscience and remote sensing symposium, Cape Town, pp. V-84–V-87 (2009)

Download references

Acknowledgements

The authors gratefully thank NVIDIA Corporation for the donation of the GPU Tesla K40 used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Leporati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontanella, A., Marenzi, E., Torti, E. et al. A suite of parallel algorithms for efficient band selection from hyperspectral images. J Real-Time Image Proc 15, 537–553 (2018). https://doi.org/10.1007/s11554-018-0765-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-018-0765-0

Keywords

Navigation