A suite of parallel algorithms for efficient band selection from hyperspectral images

  • Alessandro Fontanella
  • Elisa Marenzi
  • Emanuele Torti
  • Giovanni Danese
  • Antonio Plaza
  • Francesco Leporati
Special Issue Paper


The analysis of hyperspectral images is usually very heavy from the computational point-of-view, due to their high dimensionality. In order to avoid this problem, band selection (BS) has been widely used to reduce the dimensionality before the analysis. The aim is to extract a subset of the original bands of the hyperspectral image, preserving most of the information contained in the original data. The BS technique can be performed by prioritizing the bands on the basis of a score, assigned by specific criteria; in this case, BS turns out in the so-called band prioritization (BP). This paper focuses on BP algorithms based on the following parameters: signal-to-noise ratio, kurtosis, entropy, information divergence, variance and linearly constrained minimum variance. In particular, an optimized C serial version has been developed for each algorithm from which two parallel versions have been derived using OpenMP and NVIDIA’s compute unified device architecture. The former is designed for a multi-core CPU, while the latter is designed for a many-core graphics processing unit. For each version of these algorithms, several tests have been performed on a large database containing both synthetic and real hyperspectral images. In this way, scientists can integrate the proposed suite of efficient BP algorithms into existing frameworks, choosing the most suitable technique for their specific applications.


Hyperspectral imaging Band selection (BS) Band prioritization (BP) Real-time processing Central processing unit (CPU) Graphics processing unit (GPU) 



The authors gratefully thank NVIDIA Corporation for the donation of the GPU Tesla K40 used for this research.


  1. 1.
    Chang, C.-I., Wang, Su: Constrained band selection for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 44(6), 1575–1585 (2006)CrossRefGoogle Scholar
  2. 2.
    Mausel, P.W., Kramber, W.J., Lee, J.K.: Optimum band selection for supervised classification of multispectral data. Photogramm. Eng. Remote Sens. 56(1), 55–60 (1990)Google Scholar
  3. 3.
    Stearns, S.D., Wilson, B.E., Peterson, J.R.: Dimensionality reduction by optimal band selection for pixel classification of hyperspectral imagery. In: Applications of Digital Image Processing XVI, SPIE, vol. 2028, pp. 118–127 (1993)Google Scholar
  4. 4.
    Chang, C.-I., Du, Q., Sun, T.S., Althouse, M.L.G.: A joint band prioritization and band decorrelation approach to band selection for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 37(6), 2631–2641 (1999)CrossRefGoogle Scholar
  5. 5.
    Gong, M., Zhang, M., Yuan, Y.: Unsupervised band selection based on evolutionary multiobjective optimization for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 54(1), 544–557 (2016)CrossRefGoogle Scholar
  6. 6.
    Sun, K., Geng, X., Ji, L., Lu, Y.: A new band selection method for hyperspectral image based on data quality. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(6), 2697–2703 (2014)CrossRefGoogle Scholar
  7. 7.
    Jia, S., Tang, G., Zhu, J., Li, Q.: A novel ranking-based clustering approach for hyperspectral band selection. IEEE Trans. Geosci. Remote Sens. 54(1), 88–102 (2016)CrossRefGoogle Scholar
  8. 8.
    Wang, S., Chang, C.-I.: Band prioritization for hyperspectral imagery. In: Proceedings of SPIE 6302, Imaging Spectrometry XI, 63020I, (2006)
  9. 9.
    Petaccia, G., Leporati, F., Torti, E.: OpenMP and CUDA simulations of Sella Zerbino Dam break on unstructured grids. Comput. Geosci. 20(5), 1123–1132 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Torti, E., Acquistapace, M., Danese, G., Leporati, F., Plaza, A.: Real-time identification of hyperspectral subspaces. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(6), 2680–2687 (2014)CrossRefGoogle Scholar
  11. 11.
    Barberis, A., Danese, G., Leporati, F., Plaza, A., Torti, E.: Real-time implementation of the vertex component analysis algorithm on GPUs. IEEE Geosci. Remote Sens. Lett. 10(2), 251–255 (2013)CrossRefGoogle Scholar
  12. 12.
    Torti, E., Danese, G., Leporati, F., Plaza, A.: A hybrid CPU–GPU real-time hyperspectral unmixing chain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(2), 945–951 (2016)CrossRefGoogle Scholar
  13. 13.
    Bernabé, S., Botella, G., Martín, G., Prieto-Matias, M., Plaza, A.: Parallel implementation of a full hyperspectral unmixing chain using OpenCL. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(6), 2452–2461 (2017)CrossRefGoogle Scholar
  14. 14.
    Wu, Z., Shi, L., Li, J., Wang, Q., Sun, L., Wei, Z., Plaza, J., Plaza, A.: GPU parallel implementation of spatially adaptive hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. PP(99), 1–13 (2017)CrossRefGoogle Scholar
  15. 15.
    NVIDIA Corp.: NVIDIA Kepler GK110 architecture whitepaper. Accessed Feb 2017
  16. 16.
    Nascimento, J.M.P., Bioucas-Dias, J.M.: Hyperspectral subspace identification. IEEE Trans. Geosci. Remote Sens. 46(8), 1445–2435 (2008)Google Scholar
  17. 17.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  18. 18.
    Torti, E., Fontanella, A., Plaza, A.: Parallel real-time virtual dimensionality estimation for hyperspectral images. J. Real-Time Image Proc. (2017). Google Scholar
  19. 19.
    Sánchez, S., Plaza, A.: Fast determination of the number of endmembers for real-time hyperspectral unmixing on GPUs. J. Real-Time Image Proc. 9(3), 397–405 (2014)CrossRefGoogle Scholar
  20. 20.
    Rossi, A., Acito, N., Diani, M., Corsini, G.: RX architectures for real-time anomaly detection in hyperspectral images. J. Real-Time Image Proc. 9(3), 503–517 (2014)CrossRefGoogle Scholar
  21. 21.
    Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G., Aronsson, M., Chippendale, B.J., Faust, J.A., Pavri, B.E., Chovit, C.J., Solis, M., Olah, M.R., Williams, O.: Imaging spectroscopy and the airborne visible/infrared imaging spectrometer. Remote Sens. Environ. 65(3), 227–248 (1998)CrossRefGoogle Scholar
  22. 22.
    Yang, H., Du, Q.: Fast band selection for hyperspectral imagery. In: 2011 IEEE 17th international conference on parallel and distributed systems, Tainan, pp. 1048–1051 (2011)Google Scholar
  23. 23.
    Zheng, J., Zhao, L., Li, X., Zhou, X., Li, J.: GPU-based acceleration of the hyperspectral band selection by SNR estimation using wavelet transform. In: Proceedings of SPIE 9263, multispectral, hyperspectral, and ultraspectral remote sensing technology, techniques and applications V (2014)Google Scholar
  24. 24.
    Yang, H., Du, Q., Chen, G.: Unsupervised hyperspectral band selection using graphics processing units. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 4(3), 660–668 (2011)CrossRefGoogle Scholar
  25. 25.
    Wei, W., Du, Q., Younan, N.H.: Fast supervised hyperspectral band selection using graphics processing unit. J. Appl. Remote Sens. 6(1), 061504 (2012). CrossRefGoogle Scholar
  26. 26.
    Chang, Y.L., Fang, J.P., Benediktsson, J.A., Chang, L., Ren, H., Chen, K.S.: Band selection for hyperspectral images based on parallel particle swarm optimization schemes. In: 2009 IEEE international geoscience and remote sensing symposium, Cape Town, pp. V-84–V-87 (2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alessandro Fontanella
    • 1
  • Elisa Marenzi
    • 1
  • Emanuele Torti
    • 1
  • Giovanni Danese
    • 1
  • Antonio Plaza
    • 2
  • Francesco Leporati
    • 1
  1. 1.Department of Electrical, Computer and Biomedical EngineeringUniversity of PaviaPaviaItaly
  2. 2.Department of Technology of Computers and Communications, Escuela Politecnica de CaceresUniversity of ExtremaduraCáceresSpain

Personalised recommendations