Abstract
The detection of vessels is the first step towards an automatic diagnosis and in-depth study of retinal images to aid ophthalmologists. In this paper, a real-time algorithm based on fuzzy morphological techniques is introduced to segment vessels in retinal images. This framework provides a good trade-off between expressive power and computational requirements, since the information in the local neighbourhood is quickly processed by combining a series of fast procedures. Specifically, this method is based on the fuzzy black top-hat transform, which proves to be a simple yet very effective technique. The algorithm processes images of the DRIVE and STARE datasets, in average, in 37 and 57 ms, respectively. Thus, it can be employed while a patient is being examined, embedded into more complex systems or as a pre-screening method for large volumes of data. It outstands when it is compared with other state-of-the-art methodologies in terms of its real-time processing time and its competitive performance.
This is a preview of subscription content, log in to check access.







References
- 1.
Alonso-Montes, C., Vilarino, D., Dudek, P., Penedo, M.: Fast retinal vessel tree extraction: a pixel parallel approach. Int. J. Circuit Theory Appl. 36(5–6), 641–651 (2008)
- 2.
Akhavan, R., Faez, K.: Automated retinal blood vessel segmentation using fuzzy mathematical morphology and morphological reconstruction. In: Movaghar, A., Jamzad, M., Asadi, H. (eds.) Artificial Intelligence and Signal Processing, vol. 427, pp. 131–140. Springer, Cham (2014)
- 3.
Akhavan, R., Faez, K.: A novel retinal blood vessel segmentation algorithm using fuzzy segmentation. Int. J. Electr. Comput. Eng. 4(4), 561 (2014)
- 4.
Argüello, F., Vilariño, D.L., Heras, D.B., Nieto, A.: GPU-based segmentation of retinal blood vessels. J. Real-Time Image Process. (2014). https://doi.org/10.1007/s11554-014-0469-z
- 5.
Azzopardi, G., Strisciuglio, N., Vento, M., Petkov, N.: Trainable cosfire filters for vessel delineation with application to retinal images. Med. Image Anal. 19(1), 46–57 (2015)
- 6.
Baczynski, M., Jayaram, B., Massanet, S., Torrens, J.: Fuzzy implications: past, present, and future. In: Springer Handbook of Computational Intelligence, pp. 183–202. Springer, Berlin (2015)
- 7.
Bankhead, P., Scholfield, C.N., McGeown, J.G., Curtis, T.M.: Fast retinal vessel detection and measurement using wavelets and edge location refinement. PloS One 7(3), e32435 (2012)
- 8.
Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners, vol. 221. Springer, Berlin (2007)
- 9.
Bibiloni, P., González-Hidalgo, M., Massanet, S.: Vessel segmentation of retinal images with fuzzy morphology. In: Computational Vision and Medical Image Processing V, pp. 131–136. CRC Press, Boca Raton (2015)
- 10.
Bibiloni, P., Gonzalez-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: Mayor-Torrens t-norms in the fuzzy mathematical morphology and their applications. In: Calvo Sánchez, T., Torrens Sastre, J. (eds.) Fuzzy Logic and Information Fusion, Studies in Fuzziness and Soft Computing, vol. 339, pp. 201–236. Springer, Berlin (2016)
- 11.
Bibiloni, P., González-Hidalgo, M., Massanet, S.: A survey on curvilinear object segmentation in multiple applications. Pattern Recognit. 60, 949–970 (2016)
- 12.
Bloch, I., Maître, H.: Fuzzy mathematical morphologies: a comparative study. Pattern Recognit. 28(9), 1341–1387 (1995)
- 13.
Bock, R., Meier, J., Nyúl, L.G., Hornegger, J., Michelson, G.: Glaucoma risk index: automated glaucoma detection from color fundus images. Med. Image Anal. 14(3), 471–481 (2010)
- 14.
Chanwimaluang, T., Fan, G.: An efficient blood vessel detection algorithm for retinal images using local entropy thresholding. In: Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS’03, vol. 5, pp. V–21. IEEE (2003)
- 15.
De Baets, B.: A fuzzy morphology: a logical approach. In: Uncertainty Analysis in Engineering and Sciences: Fuzzy Logic, Statistics, and Neural Network Approach, pp. 53–67. Springer, Berlin (1998)
- 16.
Estrada, R., Tomasi, C., Cabrera, M.T., Wallace, D.K., Freedman, S.F., Farsiu, S.: Exploratory Dijkstra forest based automatic vessel segmentation: applications in video indirect ophthalmoscopy (vio). Biomed. Opt. Express 3(2), 327–339 (2012)
- 17.
Franklin, S.W., Rajan, S.E.: Retinal vessel segmentation employing ann technique by gabor and moment invariants-based features. Appl. Soft Comput. 22, 94–100 (2014)
- 18.
Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images-a survey. Comput. Methods Programs Biomed. 108(1), 407–433 (2012)
- 19.
Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using MATLAB, 2nd edn. Gatesmark Publishing, Knoxville (2004)
- 20.
González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: A fuzzy filter for high-density salt and pepper noise removal. In: Bielza, C., et al. (eds.) Advances in Artificial Intelligence. Lecture Notes in Computer Science, vol. 8109, pp. 70–79. Springer, Berlin (2013)
- 21.
Gonzalez-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: On the choice of the pair conjunction-implication into the fuzzy morphological edge detector. IEEE Trans. Fuzzy Syst. 23(4), 872–884 (2015)
- 22.
Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)
- 23.
Jelinek, H.J., Cree, M.J., Worsley, D., Luckie, A., Nixon, P.: An automated microaneurysm detector as a tool for identification of diabetic retinopathy in rural optometric practice. Clin. Exp. Optom. 89(5), 299–305 (2006)
- 24.
Kerre, E.E., Nachtegael, M.: Fuzzy Techniques in Image Processing, Studies in Fuzziness and Soft Computing, vol. 52. Springer, New York (2000)
- 25.
Krause, M., Alles, R.M., Burgeth, B., Weickert, J.: Fast retinal vessel analysis. J. Real-Time Image Process. 11(2), 413–422 (2016). https://doi.org/10.1007/s11554-013-0342-5
- 26.
Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model-based detection of tubular structures in 3D images. Comput. Vis. Image Underst. 80(2), 130–171 (2000)
- 27.
Maji, D., Santara, A., Mitra, P., Sheet, D.: Ensemble of deep convolutional neural networks for learning to detect retinal vessels in fundus images. arXiv preprint arXiv:1603.04833 (2016)
- 28.
Medina-Carnicer, R., Munoz-Salinas, R., Yeguas-Bolivar, E., Diaz-Mas, L.: A novel method to look for the hysteresis thresholds for the canny edge detector. Pattern Recognit. 44(6), 1201–1211 (2011)
- 29.
Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25(9), 1200–1213 (2006)
- 30.
Odstrcilik, J., Kolar, R., Budai, A., Hornegger, J., Jan, J., Gazarek, J., Kubena, T., Cernosek, P., Svoboda, O., Angelopoulou, E.: Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Process. 7(4), 373–383 (2013)
- 31.
Odstrcilik, J., Kolar, R., Harabis, V., Tornow, R.: Classification-based blood vessel segmentation in retinal images. In: Computational Vision and Medical Image Processing V, p. 95. CRC Press, Boca Raton (2015)
- 32.
Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., ter Haar Romeny, B., Zimmerman, J.B., Zuiderveld, K.: Adaptive histogram equalization and its variations. Comput. Vis. Gr. Image Process. 39(3), 355–368 (1987)
- 33.
Roychowdhury, S., Koozekanani, D., Parhi, K.: Iterative vessel segmentation of fundus images. IEEE Trans. Biomed. Eng. 62(7), 1738–1749 (2015)
- 34.
Roychowdhury, S., Koozekanani, D.D., Parhi, K.K.: Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE J. Biomed. Health Inf. 19(3), 1118–1128 (2015)
- 35.
Soares, J.V., Leandro, J.J., Cesar Jr., R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25(9), 1214–1222 (2006)
- 36.
Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M., Van Ginneken, B., et al.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag. 23(4), 501–509 (2004)
- 37.
Zana, F., Klein, J.C.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10(7), 1010–1019 (2001)
- 38.
Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics Gems IV, pp. 474–485. Academic Press Professional, Inc. (1994)
Acknowledgements
This work has been partially supported by the project TIN 2016-75404-P. P. Bibiloni also benefited from the fellowship FPI/1645/2014 from the Conselleria d’Educació, Cultura i Universitats of the Govern de les Illes Balears under an operational programme co-financed by the European Social Fund.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bibiloni, P., González-Hidalgo, M. & Massanet, S. A real-time fuzzy morphological algorithm for retinal vessel segmentation. J Real-Time Image Proc 16, 2337–2350 (2019). https://doi.org/10.1007/s11554-018-0748-1
Received:
Accepted:
Published:
Issue Date:
Keywords
- Retinal vessel
- Image segmentation
- Real-time
- Fuzzy morphology
- Top-hat