Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A real-time fuzzy morphological algorithm for retinal vessel segmentation

Abstract

The detection of vessels is the first step towards an automatic diagnosis and in-depth study of retinal images to aid ophthalmologists. In this paper, a real-time algorithm based on fuzzy morphological techniques is introduced to segment vessels in retinal images. This framework provides a good trade-off between expressive power and computational requirements, since the information in the local neighbourhood is quickly processed by combining a series of fast procedures. Specifically, this method is based on the fuzzy black top-hat transform, which proves to be a simple yet very effective technique. The algorithm processes images of the DRIVE and STARE datasets, in average, in 37 and 57 ms, respectively. Thus, it can be employed while a patient is being examined, embedded into more complex systems or as a pre-screening method for large volumes of data. It outstands when it is compared with other state-of-the-art methodologies in terms of its real-time processing time and its competitive performance.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Alonso-Montes, C., Vilarino, D., Dudek, P., Penedo, M.: Fast retinal vessel tree extraction: a pixel parallel approach. Int. J. Circuit Theory Appl. 36(5–6), 641–651 (2008)

  2. 2.

    Akhavan, R., Faez, K.: Automated retinal blood vessel segmentation using fuzzy mathematical morphology and morphological reconstruction. In: Movaghar, A., Jamzad, M., Asadi, H. (eds.) Artificial Intelligence and Signal Processing, vol. 427, pp. 131–140. Springer, Cham (2014)

  3. 3.

    Akhavan, R., Faez, K.: A novel retinal blood vessel segmentation algorithm using fuzzy segmentation. Int. J. Electr. Comput. Eng. 4(4), 561 (2014)

  4. 4.

    Argüello, F., Vilariño, D.L., Heras, D.B., Nieto, A.: GPU-based segmentation of retinal blood vessels. J. Real-Time Image Process. (2014). https://doi.org/10.1007/s11554-014-0469-z

  5. 5.

    Azzopardi, G., Strisciuglio, N., Vento, M., Petkov, N.: Trainable cosfire filters for vessel delineation with application to retinal images. Med. Image Anal. 19(1), 46–57 (2015)

  6. 6.

    Baczynski, M., Jayaram, B., Massanet, S., Torrens, J.: Fuzzy implications: past, present, and future. In: Springer Handbook of Computational Intelligence, pp. 183–202. Springer, Berlin (2015)

  7. 7.

    Bankhead, P., Scholfield, C.N., McGeown, J.G., Curtis, T.M.: Fast retinal vessel detection and measurement using wavelets and edge location refinement. PloS One 7(3), e32435 (2012)

  8. 8.

    Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners, vol. 221. Springer, Berlin (2007)

  9. 9.

    Bibiloni, P., González-Hidalgo, M., Massanet, S.: Vessel segmentation of retinal images with fuzzy morphology. In: Computational Vision and Medical Image Processing V, pp. 131–136. CRC Press, Boca Raton (2015)

  10. 10.

    Bibiloni, P., Gonzalez-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: Mayor-Torrens t-norms in the fuzzy mathematical morphology and their applications. In: Calvo Sánchez, T., Torrens Sastre, J. (eds.) Fuzzy Logic and Information Fusion, Studies in Fuzziness and Soft Computing, vol. 339, pp. 201–236. Springer, Berlin (2016)

  11. 11.

    Bibiloni, P., González-Hidalgo, M., Massanet, S.: A survey on curvilinear object segmentation in multiple applications. Pattern Recognit. 60, 949–970 (2016)

  12. 12.

    Bloch, I., Maître, H.: Fuzzy mathematical morphologies: a comparative study. Pattern Recognit. 28(9), 1341–1387 (1995)

  13. 13.

    Bock, R., Meier, J., Nyúl, L.G., Hornegger, J., Michelson, G.: Glaucoma risk index: automated glaucoma detection from color fundus images. Med. Image Anal. 14(3), 471–481 (2010)

  14. 14.

    Chanwimaluang, T., Fan, G.: An efficient blood vessel detection algorithm for retinal images using local entropy thresholding. In: Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS’03, vol. 5, pp. V–21. IEEE (2003)

  15. 15.

    De Baets, B.: A fuzzy morphology: a logical approach. In: Uncertainty Analysis in Engineering and Sciences: Fuzzy Logic, Statistics, and Neural Network Approach, pp. 53–67. Springer, Berlin (1998)

  16. 16.

    Estrada, R., Tomasi, C., Cabrera, M.T., Wallace, D.K., Freedman, S.F., Farsiu, S.: Exploratory Dijkstra forest based automatic vessel segmentation: applications in video indirect ophthalmoscopy (vio). Biomed. Opt. Express 3(2), 327–339 (2012)

  17. 17.

    Franklin, S.W., Rajan, S.E.: Retinal vessel segmentation employing ann technique by gabor and moment invariants-based features. Appl. Soft Comput. 22, 94–100 (2014)

  18. 18.

    Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images-a survey. Comput. Methods Programs Biomed. 108(1), 407–433 (2012)

  19. 19.

    Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using MATLAB, 2nd edn. Gatesmark Publishing, Knoxville (2004)

  20. 20.

    González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: A fuzzy filter for high-density salt and pepper noise removal. In: Bielza, C., et al. (eds.) Advances in Artificial Intelligence. Lecture Notes in Computer Science, vol. 8109, pp. 70–79. Springer, Berlin (2013)

  21. 21.

    Gonzalez-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: On the choice of the pair conjunction-implication into the fuzzy morphological edge detector. IEEE Trans. Fuzzy Syst. 23(4), 872–884 (2015)

  22. 22.

    Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)

  23. 23.

    Jelinek, H.J., Cree, M.J., Worsley, D., Luckie, A., Nixon, P.: An automated microaneurysm detector as a tool for identification of diabetic retinopathy in rural optometric practice. Clin. Exp. Optom. 89(5), 299–305 (2006)

  24. 24.

    Kerre, E.E., Nachtegael, M.: Fuzzy Techniques in Image Processing, Studies in Fuzziness and Soft Computing, vol. 52. Springer, New York (2000)

  25. 25.

    Krause, M., Alles, R.M., Burgeth, B., Weickert, J.: Fast retinal vessel analysis. J. Real-Time Image Process. 11(2), 413–422 (2016). https://doi.org/10.1007/s11554-013-0342-5

  26. 26.

    Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model-based detection of tubular structures in 3D images. Comput. Vis. Image Underst. 80(2), 130–171 (2000)

  27. 27.

    Maji, D., Santara, A., Mitra, P., Sheet, D.: Ensemble of deep convolutional neural networks for learning to detect retinal vessels in fundus images. arXiv preprint arXiv:1603.04833 (2016)

  28. 28.

    Medina-Carnicer, R., Munoz-Salinas, R., Yeguas-Bolivar, E., Diaz-Mas, L.: A novel method to look for the hysteresis thresholds for the canny edge detector. Pattern Recognit. 44(6), 1201–1211 (2011)

  29. 29.

    Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25(9), 1200–1213 (2006)

  30. 30.

    Odstrcilik, J., Kolar, R., Budai, A., Hornegger, J., Jan, J., Gazarek, J., Kubena, T., Cernosek, P., Svoboda, O., Angelopoulou, E.: Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Process. 7(4), 373–383 (2013)

  31. 31.

    Odstrcilik, J., Kolar, R., Harabis, V., Tornow, R.: Classification-based blood vessel segmentation in retinal images. In: Computational Vision and Medical Image Processing V, p. 95. CRC Press, Boca Raton (2015)

  32. 32.

    Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., ter Haar Romeny, B., Zimmerman, J.B., Zuiderveld, K.: Adaptive histogram equalization and its variations. Comput. Vis. Gr. Image Process. 39(3), 355–368 (1987)

  33. 33.

    Roychowdhury, S., Koozekanani, D., Parhi, K.: Iterative vessel segmentation of fundus images. IEEE Trans. Biomed. Eng. 62(7), 1738–1749 (2015)

  34. 34.

    Roychowdhury, S., Koozekanani, D.D., Parhi, K.K.: Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE J. Biomed. Health Inf. 19(3), 1118–1128 (2015)

  35. 35.

    Soares, J.V., Leandro, J.J., Cesar Jr., R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25(9), 1214–1222 (2006)

  36. 36.

    Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M., Van Ginneken, B., et al.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag. 23(4), 501–509 (2004)

  37. 37.

    Zana, F., Klein, J.C.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10(7), 1010–1019 (2001)

  38. 38.

    Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics Gems IV, pp. 474–485. Academic Press Professional, Inc. (1994)

Download references

Acknowledgements

This work has been partially supported by the project TIN 2016-75404-P. P. Bibiloni also benefited from the fellowship FPI/1645/2014 from the Conselleria d’Educació, Cultura i Universitats of the Govern de les Illes Balears under an operational programme co-financed by the European Social Fund.

Author information

Correspondence to Pedro Bibiloni.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bibiloni, P., González-Hidalgo, M. & Massanet, S. A real-time fuzzy morphological algorithm for retinal vessel segmentation. J Real-Time Image Proc 16, 2337–2350 (2019). https://doi.org/10.1007/s11554-018-0748-1

Download citation

Keywords

  • Retinal vessel
  • Image segmentation
  • Real-time
  • Fuzzy morphology
  • Top-hat