Abstract
Robust visual tracking is a challenging problem because the appearance of a target may rapidly change due to significant variations in the object’s motion and the surrounding illumination. In this paper, a novel robust visual tracking algorithm is proposed based on an existing compressive tracking method. The proposed algorithm adopts multiple naive Bayes classifiers, each trained under a different scale condition, to realize online parallel multi-scale classification. Further, each classifier was initialized by randomly generating different types of Haar-like features. By doing so, the robustness of the feature classification can be improved to obtain more accurate tracking results. To enhance the real-time performance of the visual tracking system, the formula of the naive Bayes classifier is studied and simplified to speed up the processing speed of parallel multi-scale feature classification. After acceleration via formula simplification and parallel implementation, the proposed visual tracking algorithm can reach a tracking performance of approximately 45 frames per second (fps) when dealing with images of 642 × 352 pixels on a popular Intel Core i5-3230M platform. The experimental results show that the proposed algorithm outperforms state-of-the-art visual tracking methods on challenging videos in terms of success rate, tracking accuracy, and visual comparison.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Avidan, S.: Support vector tracking. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, vol. I, pp. 184–191 (2001)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
Jurie, F., Dhome, M.: Hyperplane approximation for template matching. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 996–1000 (2002)
Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, pp. 2544–2550 (2010)
Zhang, K., Zhang, L., Liu, Q., Zhang, D., Yang, M.-H.: Fast visual tracking via dense spatio-temporal context learning. In: Proceedings European Conference on Computer Vision, vol. 8693, pp. 127–141 (2014)
Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: Proceedings British Machine Vision Conference, pp. 47–56 (2006)
Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: Proceedings European Conference on Computer Vision, pp. 234–247 (2008)
Babenko, B., Yang, M.-H., Belongie, S.: Visual tracking with online multiple instance learning. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, pp. 983–990 (2012)
Babenko, B., Yang, M.-H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)
Zhang, K., Song, H.: Real-time visual tracking via online weighted multiple instance learning. Pattern Recogn. 46(1), 397–411 (2013)
Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking–learning–detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)
Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Proceedings European Conference on Computer Vision, pp. 864–877 (2012)
Zhang, K., Zhang, L., Yang, M.-H.: Fast compressive tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 2002–2015 (2014)
Gao, Y., Zhou, H., Zhang, X.: Enhanced fast compressive tracking based on adaptive measurement matrix. IET Comput. Vis. 9(6), 857–863 (2015)
Wu, Y., Jia, N., Sun, J.: Real-time multi-scale tracking based on compressive sensing. Vis. Comput. 31(4), 471–484 (2015)
Jenkins, M.D., Barrie, P., Buggy, T., Morison, G.: Extended fast compressive tracking with weighted multi-frame template matching for fast motion tracking. Pattern Recogn. Lett. 69, 82–87 (2016)
Bai Y., Tang, M.: Robust tracking via weakly supervised ranking SVM. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, pp. 1854–1861 (2012)
Hare, S., Golodetz, S., Saffari, A., Vineet, V., Cheng, M.-M., Hicks, S.L., Torr, P.H.S.: Struck: structured output tracking with kernels. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2096–2109 (2014)
Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res. 6, 1453–1484 (2005)
Achlioptas, D.: Database-friendly random projections: Johnson–Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66(4), 671–687 (2003)
Ng, A., Jordan, M.: On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes. In: Proceedings Advances in Neural Information Processing Systems, pp. 841–848 (2002)
Diaconis, P., Freedman, D.: Asymptotics of graphical projection pursuit. Ann. Stat. 12(3), 793–815 (1984)
Visual tracker benchmark. http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html
Tracking with online multiple instance learning (MILTrack). http://vision.ucsd.edu/~bbabenko/project_miltrack.html
C++ implementation of TLD (OpenTLD). https://github.com/alantrrs/OpenTLD
Everingham, M., Gool, L., Williams, C., Winn, J., Zisserman, A.: The pascal visual object class (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
The experimental results website. http://www.ee.tku.edu.tw/~stuProject/stuProject2016/e224/MSPCT/ExpResults.html
Acknowledgements
This work was supported by the Ministry of Science and Technology of Taiwan, ROC under grant MOST 105-2221-E-032-024 and 103-2632-E-032-001-MY3.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tsai, CY., Feng, YC. Real-time multi-scale parallel compressive tracking. J Real-Time Image Proc 16, 2073–2091 (2019). https://doi.org/10.1007/s11554-017-0713-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-017-0713-4