Skip to main content
Log in

Real-time multi-scale parallel compressive tracking

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Robust visual tracking is a challenging problem because the appearance of a target may rapidly change due to significant variations in the object’s motion and the surrounding illumination. In this paper, a novel robust visual tracking algorithm is proposed based on an existing compressive tracking method. The proposed algorithm adopts multiple naive Bayes classifiers, each trained under a different scale condition, to realize online parallel multi-scale classification. Further, each classifier was initialized by randomly generating different types of Haar-like features. By doing so, the robustness of the feature classification can be improved to obtain more accurate tracking results. To enhance the real-time performance of the visual tracking system, the formula of the naive Bayes classifier is studied and simplified to speed up the processing speed of parallel multi-scale feature classification. After acceleration via formula simplification and parallel implementation, the proposed visual tracking algorithm can reach a tracking performance of approximately 45 frames per second (fps) when dealing with images of 642 × 352 pixels on a popular Intel Core i5-3230M platform. The experimental results show that the proposed algorithm outperforms state-of-the-art visual tracking methods on challenging videos in terms of success rate, tracking accuracy, and visual comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Avidan, S.: Support vector tracking. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, vol. I, pp. 184–191 (2001)

  2. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  3. Jurie, F., Dhome, M.: Hyperplane approximation for template matching. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 996–1000 (2002)

    Article  Google Scholar 

  4. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, pp. 2544–2550 (2010)

  5. Zhang, K., Zhang, L., Liu, Q., Zhang, D., Yang, M.-H.: Fast visual tracking via dense spatio-temporal context learning. In: Proceedings European Conference on Computer Vision, vol. 8693, pp. 127–141 (2014)

    Chapter  Google Scholar 

  6. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: Proceedings British Machine Vision Conference, pp. 47–56 (2006)

  7. Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: Proceedings European Conference on Computer Vision, pp. 234–247 (2008)

    Google Scholar 

  8. Babenko, B., Yang, M.-H., Belongie, S.: Visual tracking with online multiple instance learning. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, pp. 983–990 (2012)

  9. Babenko, B., Yang, M.-H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)

    Article  Google Scholar 

  10. Zhang, K., Song, H.: Real-time visual tracking via online weighted multiple instance learning. Pattern Recogn. 46(1), 397–411 (2013)

    Article  MathSciNet  Google Scholar 

  11. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking–learning–detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)

    Article  Google Scholar 

  12. Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Proceedings European Conference on Computer Vision, pp. 864–877 (2012)

    Chapter  Google Scholar 

  13. Zhang, K., Zhang, L., Yang, M.-H.: Fast compressive tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 2002–2015 (2014)

    Article  Google Scholar 

  14. Gao, Y., Zhou, H., Zhang, X.: Enhanced fast compressive tracking based on adaptive measurement matrix. IET Comput. Vis. 9(6), 857–863 (2015)

    Article  Google Scholar 

  15. Wu, Y., Jia, N., Sun, J.: Real-time multi-scale tracking based on compressive sensing. Vis. Comput. 31(4), 471–484 (2015)

    Article  Google Scholar 

  16. Jenkins, M.D., Barrie, P., Buggy, T., Morison, G.: Extended fast compressive tracking with weighted multi-frame template matching for fast motion tracking. Pattern Recogn. Lett. 69, 82–87 (2016)

    Article  Google Scholar 

  17. Bai Y., Tang, M.: Robust tracking via weakly supervised ranking SVM. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, pp. 1854–1861 (2012)

  18. Hare, S., Golodetz, S., Saffari, A., Vineet, V., Cheng, M.-M., Hicks, S.L., Torr, P.H.S.: Struck: structured output tracking with kernels. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2096–2109 (2014)

    Article  Google Scholar 

  19. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res. 6, 1453–1484 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Achlioptas, D.: Database-friendly random projections: Johnson–Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66(4), 671–687 (2003)

    Article  MathSciNet  Google Scholar 

  21. Ng, A., Jordan, M.: On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes. In: Proceedings Advances in Neural Information Processing Systems, pp. 841–848 (2002)

  22. Diaconis, P., Freedman, D.: Asymptotics of graphical projection pursuit. Ann. Stat. 12(3), 793–815 (1984)

    Article  MathSciNet  Google Scholar 

  23. Visual tracker benchmark. http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html

  24. Tracking with online multiple instance learning (MILTrack). http://vision.ucsd.edu/~bbabenko/project_miltrack.html

  25. C++ implementation of TLD (OpenTLD). https://github.com/alantrrs/OpenTLD

  26. Everingham, M., Gool, L., Williams, C., Winn, J., Zisserman, A.: The pascal visual object class (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  27. The experimental results website. http://www.ee.tku.edu.tw/~stuProject/stuProject2016/e224/MSPCT/ExpResults.html

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of Taiwan, ROC under grant MOST 105-2221-E-032-024 and 103-2632-E-032-001-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Yi Tsai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, CY., Feng, YC. Real-time multi-scale parallel compressive tracking. J Real-Time Image Proc 16, 2073–2091 (2019). https://doi.org/10.1007/s11554-017-0713-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-017-0713-4

Keywords

Navigation