Skip to main content
Log in

FPGA implementation of a maximum simplex volume algorithm for endmember extraction from remotely sensed hyperspectral images

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Spectral unmixing is a very important technique for remotely sensed hyperspectral unmixing. Since more hyperspectral applications now require real or near real-time processing capabilities, fast spectral unmixing using field-programmable gate arrays (FPGAs) has received considerable interest in recent years. FPGAs can provide onboard, high computing performance at low power consumption. Another important characteristic of FPGA-based systems is reconfigurability, which makes them more flexible to process different kind of scenes. Pure signature (endmember) extraction is a fundamental step in spectral unmixing, which has been tackled using the maximum volume principle by several algorithms, most notably N-FINDR and simplex growing algorithm (SGA). These algorithms find out the simplex with maximum volume as a mechanism to extract endmembers. However, a previous dimensionality reduction step is generally required, which introduces information loss and additional computational burden. To address these issues, in this work we introduce a new volume calculation formula and further develop a new real-time implementation of a maximum simplex volume algorithm (called RT-MSVA). The proposed RT-MSVA does not need dimensionality reduction, so all spectral bands can be used without losing any information to ensure robust endmember extraction accuracy. Experiments with synthetic and real hyperspectral images have been conducted to evaluate the accuracy and computational performance of our proposed method. Our experimental results indicate that proposed FPGA-based implementation significantly outperforms the corresponding software version and achieves real-time processing performance in the considered problem. It also exhibits better endmember extraction accuracy and comparable performance to other available techniques, such as a real-time implementation of a simplex growing algorithm (RT-FSGA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Goetz, A.F.H., Vane, G., Solomon, J.E., Rock, B.N.: Imaging spectrometry for earth remote sensing. Science 228(4704), 1147–1153 (1985)

    Article  Google Scholar 

  2. Jia, S., Xie, Y., Tang, G., Zhu, J.: Spatial-spectral-combined sparse representation-based classification for hyperspectral imagery. Soft. Comput. 45, 101–110 (2014)

    Google Scholar 

  3. Qian, Y., Yao, F., Jia, S.: Band selection for hyperspectral imagery using affinity propagation. IET Comput. Vis. 3(4), 213–222 (2009)

    Article  Google Scholar 

  4. Dias, J.M.B., Plaza, A., Dobigeon, N., Parente, M., et al.: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(2), 354–379 (2012)

    Article  Google Scholar 

  5. Keshava, N., Mustard, J.F.: Spectral unmixing. IEEE Signal Process. Mag. 19, 44–57 (2002)

    Article  Google Scholar 

  6. Chang, C.-I.: Target abundance-constrained subpixel detection: Partially Constrained Least-Squares Methods. In: Hyperspectral Imaging. Springer, US, pp. 39–50 (2003)

    Chapter  Google Scholar 

  7. Plaza, A., Martínez, P., Pérez, R., Plaza, J.: A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data. IEEE Trans. Geosci. Remote Sens. 42(3), 650–663 (2004)

    Article  Google Scholar 

  8. Boardman, J.W.: Geometric mixture analysis of imaging spectrometry data. In: Proceedings of International Geoscience Remote Sensing Symposium, Pasadena, CA, vol. 4, pp. 2369–2371. (1994)

  9. Nascimento, J.M.P., Dias, J.M.: Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43(4), 898–910 (2005)

    Article  Google Scholar 

  10. Neville, R.A., Staenz, K., Szeredi, T., Lefebvre, J., Hauff, P.: Automatic endmember extraction from hyperspectral data for mineral exploration. In: Proceedings of 4th International Airborne Remote Sensing Conference and Exhibition/21 st Canadian Symposium Remote Sensing, Ottawa, ON, Canada, June, pp. 21–24. (1999)

  11. Winter, M.E.: N-FINDR: an algorithm for fast autonomous spectral endmember determination in hyperspectral data. In: Proceedings of SPIE, vol. 3753, pp. 266–275. (1999)

  12. Chang, C.-I., Wu, C., Liu, W., Ouyang, Y.C.: A growing method for simplex-based endmember extraction algorithms. IEEE Trans. Geosci. Remote Sens. 44(10), 2804–2819 (2006)

    Article  Google Scholar 

  13. Geng, X.R.: Target detection and classification for hyperspectral imagery. Ph.D. dissertation, Institute of Remote Sensing Applications Chinese Academy of Science, Beijing, China (2005)

  14. Geng, X.R., Zhao, Y.C., Wang, F.X., Gong, P.: A new formula for a simplex and its application to endmember extraction for hyperspectral image analysis. Int. J. Remote Sens. 31(4), 1027–1035 (2010)

    Article  Google Scholar 

  15. Qu, H., Huang, B., Zhang, J., Zhang, Y.: An improved maximum simplex volume algorithm to unmixing hyperspectral data. In: Proceedings of SPIE, vol. 8895, pp. 889507-1–889507-7. (2013)

  16. Zhang, B.: Intelligent remote sensing satellite system. J. Remote Sens. 15(3), 415–422 (2011)

    Google Scholar 

  17. Lee, C.A., Gasster, S.D., Plaza, A., Chang, C.-I., Huang, B.: Recent developments in high performance computing for remote sensing: a review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 4(3), 508–527 (2011)

    Article  Google Scholar 

  18. Plaza, A., Plaza, J., Paz, A., Sánchez, S.: Parallel hyperspectral image and signal processing. IEEE Signal Process. Mag. 28, 119–126 (2011)

    Article  Google Scholar 

  19. Sánchez, S., Paz, A., Martin, G., Plaza, A.: Parallel unmixing of remotely sensed hyperspectral images on commodity graphics processing units. Concur. Comput. Pract. Exp. 23(13), 1538–1557 (2011)

    Article  Google Scholar 

  20. Lysaght, P., Blodget, B., Mason, J., Young, J., Bridgford, B.: Enhanced architectures, design methodologies and CAD tools for dynamic reconfiguration of Xilinx FPGAs. In: Proceedings of International Conference on Field Programmable Logic Applications, pp. 1–6. (2006)

  21. Compton, K., Hauck, S.: Reconfigurable computing: a survey of systems and software. ACM Comput. Surv. 34, 171–210 (2002)

    Article  Google Scholar 

  22. Tessier, R., Burleson, W.: Reconfigurable computing for digital signal processing: a survey. J. VLSI Signal Process. Syst. 28(1), 7–27 (2001)

    Article  Google Scholar 

  23. Sánchez, S., Rui, R., Sousa, L., et al.: Real-time implementation of remotely sensed hyperspectral image unmixing on GPUs. J. Real-Time Image Proc. 10(3), 469–483 (2015)

    Article  Google Scholar 

  24. Sánchez, S., Plaza, A.: Fast determination of the number of endmembers for real-time hyperspectral unmixing on GPUs. J. Real-Time Image Proc. 9(3), 397–405 (2012)

    Article  Google Scholar 

  25. Hauck, S.: The roles of FPGAs in reprogrammable systems. Proc. IEEE 86(4), 615–639 (1998)

    Article  Google Scholar 

  26. Plaza, A., Du, Q., Chang, Y.-L., King, R.L.: High performance computing for hyperspectral remote sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 4(3), 528–544 (2011)

    Article  Google Scholar 

  27. Gonzalez, C., Lopez, S., Mozos, D., et al.: A novel FPGA-based architecture for the estimation of the virtual dimensionality in remotely sensed hyperspectral images. J. Real-Time Image Proc. 43(5), 1–12 (2015)

    Google Scholar 

  28. González, C., Mozos, D., Resano, J., Plaza, A.: FPGA implementation of the N-FINDR algorithm for remotely sensed hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 50(2), 374–388 (2012)

    Article  Google Scholar 

  29. Wu, C.-C., Chen, H.-M., Chang, C.-I.: Real-time N-finder processing algorithms for hyperspectral imagery. J. Real-Time Image Proc. 7(2), 105–129 (2012)

    Article  Google Scholar 

  30. Chang, C.-I., Xiong, W., Wu, C.C.: Field-programmable gate array design of implementing simplex growing algorithm for hyperspectral endmember extraction. IEEE Trans. Geosci. Remote Sens. 51(3), 1693–1700 (2013)

    Article  Google Scholar 

  31. Qu, H., Zhang, J., Lin, Z., Chen, H., Huang, B.: GPU acceleration of the simplex volume algorithm for hyperspectral endmember extraction. In: Proceedings SPIE, vol. 8539, pp. 85390B-1–85390B-7. (2012)

  32. Xiong, W., Wu, C.C., Chang, C.-I., Kapalkis, K., Chen, H.M.: Fast algorithms to implement N-FINDR for hyperspectral endmember extraction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 4(3), 545–564 (2011)

    Article  Google Scholar 

  33. Plaza, A., Chang, C.-I.: Impact of initialization on design of endmember extraction algorithms. IEEE Trans. Geosci. Remote Sens. 44(11), 3397–3407 (2006)

    Article  Google Scholar 

  34. Martín, G., Plaza, A.: Region-based spatial preprocessing for endmember extraction and spectral unmixing. IEEE Geosci. Remote Sens. Lett. 8(4), 745–749 (2011)

    Article  Google Scholar 

  35. Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G., Aronsson, M., Chippendale, B.J., Faust, J.A., Pavri, B.E., Chovit, C.J., Solis, M., Olah, M.R., Williams, O.: Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 65(3), 227–248 (1998)

    Article  Google Scholar 

  36. Chang, C.-I., Du, Q.: Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 42(3), 608–619 (2004)

    Article  Google Scholar 

  37. Chang, C.-I., Wu, C.C., Lo, C.-S., Chang, M.-L.: Real-time simplex growing algorithms for hyperspectral endmember extraction. IEEE Trans. Geosci. Remote Sens. 40(4), 1834–1850 (2010)

    Article  Google Scholar 

  38. Chang, C.-I.: Hyperspectral Imaging: Techniques for Spectral Detection and Classification. Kluwer, New York (2003)

    Book  Google Scholar 

  39. Heinz, D.C., Chang, C.-I.: Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 39(3), 529–545 (2001)

    Article  Google Scholar 

  40. Zhao, C., Zhao, G., Qi, B., Li, X.: Reduced near border set for endmember extraction. Optik Int. J. Light Electron Opt. 126(23), 4424–4431 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China under Grant Nos. 41325004, 41571349, and 91638201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianru Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Gao, L., Plaza, A. et al. FPGA implementation of a maximum simplex volume algorithm for endmember extraction from remotely sensed hyperspectral images. J Real-Time Image Proc 16, 1681–1694 (2019). https://doi.org/10.1007/s11554-017-0679-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-017-0679-2

Keywords

Navigation