Journal of Real-Time Image Processing

, Volume 16, Issue 2, pp 523–533 | Cite as

MRI denoising by nonlocal means on multi-GPU

  • Donatella GranataEmail author
  • Umberto Amato
  • Bruno Alfano
Original Research Paper


A critical issue in image restoration is noise removal, whose state-of-art algorithm, NonLocal Means, is highly demanding in terms of computational time. Aim of the present paper is to boost its performance by an efficient algorithm tailored to GPU hardware architectures. This algorithm adapts itself to several variants of the methodologies in terms of different strategies for estimating the involved filtering parameter, type of noise affecting data, multicomponent signals, spatial dimension of the images. Numerical experiments on brain Magnetic Resonance images are provided.


NonLocal means Image denoising Magnetic resonance imaging Graphical processing unit 


  1. 1.
    Alfano, B., Comerci, M., Larobina, M., Prinster, A., Hornak, J.P., Selvan, S.E., Amato, U., Quarantelli, M., Tedeschi, G., Brunetti, A., Salvatore, M.: An MRI digital brain phantom for validation of segmentation methods. Med. Image Anal. 15(3), 329–339 (2011)CrossRefGoogle Scholar
  2. 2.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4, 490–530 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Buades, A., Coll, B., Morel, J.M.: Nonlocal image and movie denoising. Int. J. Comput. Vision 76(2), 123–139 (2008)CrossRefGoogle Scholar
  4. 4.
    Constantinides, C.D., Atalar, E., McVeigh, E.R.: Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn. Reson. Med. 38(5), 852–857 (1997)CrossRefGoogle Scholar
  5. 5.
    Coupé P., Hellier P., Prima S., Kervrann C., Barillot, C.: 3D wavelet subbands mixing for image denoising. J. Biomed. Imaging (2008a)Google Scholar
  6. 6.
    Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27(4), 425–441 (2008b)CrossRefGoogle Scholar
  7. 7.
    Cuomo S., De Michele P., Francesco P.: 3D data denoising via non-local means filter by using parallel GPU strategies. Comput. Math. Methods Med. (2014)Google Scholar
  8. 8.
    de Araujo, A.F., Constantinou, C.E., Tavares, J.M.R.S.: New artificial life model for image enhancement . Expert Syst. Appl. 41(13), 5892–5906 (2014)Google Scholar
  9. 9.
    Efros, A., Leung, T.: Texture synthesis by non-parametric sampling. In: Computer Vision. The Proceedings of the Seventh IEEE International Conference on, vol 2, pp 1033–1038 (1999)Google Scholar
  10. 10.
    Gerig, G., Kubler, O., Kikinis, R., Jolesz, F.: Nonlinear anisotropic filtering of MRI data. IEEE Trans. Med. Imaging 11(2), 221–232 (1992)CrossRefGoogle Scholar
  11. 11.
    Li L., Hou W., Zhang X., Ding M.: GPU-Based Block-Wise nonlocal means denoising for 3D ultrasound images. Comput. Math. Methods Med. (2013)Google Scholar
  12. 12.
    De Fontes, F.P.X., Barroso, G.A., Coupé, P., Hellier, P.: Real time ultrasound image denoising. J. Real Time Image Proc. 6(1), 15–22 (2011)Google Scholar
  13. 13.
    Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., Haase, A.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–1210 (2002)CrossRefGoogle Scholar
  14. 14.
    Goossens, B., Luong, H., Aelterman, J., Pižurica A., Philips W.: A GPU-accelerated real-time NLMeans algorithm for denoising color video sequences. Advanced concepts for intelligent vision systems. Lecture Notes in Computer Science, vol. 6475, pp. 46–57. Springer, Berlin Heidelberg (2010)Google Scholar
  15. 15.
    Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Reson. Med. (1995)Google Scholar
  16. 16.
    Huang, K., Zhang, D., Wang, K.: Non-local means denoising algorithm accelerated by GPU. Proc. SPIE 7497, 749711–749718 (2009)CrossRefGoogle Scholar
  17. 17.
    Kharlamov, A., Podlozhnyuk, V.: Image denoising. NVIDIA Inc, Tech. rep. (2007)Google Scholar
  18. 18.
    Koay, C.G., Basser, P.: Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. J. Magn. Reson. 179(2), 317–322 (2006)CrossRefGoogle Scholar
  19. 19.
    Manjón, J.V., Carbonell-Caballero, J., Lull, J.J., García-Martí, G., Martí-Bonmatí, L., Robles, M.: MRI denoising using non-local means. Med. Image Anal. 12(4), 514–523 (2008)CrossRefGoogle Scholar
  20. 20.
    Manjón, J.V., Thacker, N.A., Lull, J.J., García-Martí, G., Martí-Bonmatí, L., Robles, M.: Multicomponent MR image denoising. Int. J. Biomed. Imaging (2009)Google Scholar
  21. 21.
    Manjón, J.V., Coupé, P., Martí-Bonmatí, L., Collins, D.L., Robles, M.: Adaptive non-local means denoising of MR images with spatially varying noise levels. J. Magn. Reson. Imaging 31(1), 192–203 (2010)CrossRefGoogle Scholar
  22. 22.
    Palma, G., Comerci, M., Alfano, B., Cuomo, S., De Michele, P., Piccialli, F., Borrelli, P.: 3D non-local means denoising via multi-GPU. In: Computer Science and Information Systems (FedCSIS), 2013 Federated Conference, pp. 495–498 (2013)Google Scholar
  23. 23.
    Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med. 42(5), 952–962 (1999)CrossRefGoogle Scholar
  24. 24.
    Tristán-Vega, A., García-Pérez, V., Aja-Fernández, S., Westin, C.F.: Efficient and robust nonlocal means denoising of MR data based on salient features matching. Comput. Methods Progr. Biomed. 105(2), 131–144 (2012)CrossRefGoogle Scholar
  25. 25.
    Wiest-Daesslé, N., Prima, S., Coupé, P., Morrissey, S., Barillot, C.: Rician noise removal by non-local means filtering for low signal-to-noise ratio MRI: applications to DT-MRI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) Medical image computing and computer-assisted intervention MICCAI 2008. Lecture notes in computer science, vol. 5242, pp. 171–179. Springer, Berlin, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Istituto per le Applicazioni del Calcolo ‘Mauro Picone’ CNRNaplesItaly
  2. 2.Istituto di Biostrutture e Bioimmagini CNRNaplesItaly

Personalised recommendations