Skip to main content
Log in

Real-time implementation of an adaptive simultaneous dynamic range compression and local contrast enhancement algorithm on a GPU

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Dynamic range compression is a fundamental function required in digital video cameras and display monitors to improve the visual appeal of color images. This paper presents a real-time implementation of an algorithm for adaptive dynamic range compression and contrast enhancement on a graphics processing unit (GPU). To achieve this, we first designed an adaptive intensity transfer function to handle the enhancement of standard-dynamic-range (8 bits/channel) images with both low- and high-intensity. The proposed algorithm then combines the intensity transfer function with an existing simultaneous dynamic range compression and local contrast enhancement (SDRCLCE) algorithm for the simultaneous compression of dynamic range and enhancement of local contrast. To reach real-time performance in processing high-resolution color images, the proposed algorithm is implemented using an NVIDIA GeForce GTX 650 Ti GPU based on NVIDIA’s Compute Unified Device Architecture (CUDA) parallel programming running on a 3.33 GHz Intel Core i5-661 CPU. Compared with a LUT-accelerated implementation, the proposed GPU implementation was shown to accelerate the processing of 1024 × 1024 color images by 11.1 times and color images of 4096 × 4096 pixels by 7.5 times, including the cost of memory copy between the host and device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jobson, D., Rahman, Z., Woodell, G.: A multiscale Retinex for bridging the gap between color images and human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Article  Google Scholar 

  2. Rahman, Z., Jobson, D., Woodell, G.: Retinex processing for automatic image enhancement. J. Electron. Imaging 13(1), 100–110 (2004)

    Article  Google Scholar 

  3. Horiuchi, T., Tominaga, S.: HDR image quality enhancement based on spatially variant retinal response. EURASIP J. Image Video Process. 2010(438958), 1–11 (2010)

    Article  Google Scholar 

  4. Chen, S.-H., Beghdadi, A.: Natural enhancement of color image. EURASIP J. Image Video Process. 2010(175203), 1–19 (2010)

    Article  Google Scholar 

  5. Saponara, S., Fanucci, L., Marsi, S., Ramponi, G.: Algorithmic and architectural design for real-time and power-efficient Retinex image/video processing. J. Real Time Image Process. 1(4), 267–283 (2007)

    Article  Google Scholar 

  6. Saponara, S., Fanucci, L., Marsi, S., Ramponi, G., Kammler, D., Witte, E.M.: Application-specific instruction-set processor for retinex-like image and video processing. IEEE Trans. Circuits Syst. II Exp. Briefs 54(7), 596–600 (2007)

    Article  Google Scholar 

  7. Vonikakis, V., Andreadis, I., Gasteratos, A.: Fast centre-surround contrast modification. IET Image Process. 2(1), 19–34 (2008)

    Article  Google Scholar 

  8. Iakovidou, C., Vonikakis, V., Andreadis, I.: FPGA implementation of a real-time biologically inspired image enhancement algorithm. J. Real Time Image Process. 3(4), 269–287 (2008)

    Article  Google Scholar 

  9. Hassan, F., Carletta, J.E.: An FPGA-based architecture for a local tone-mapping operator. J. Real Time Image Process. 2(4), 293–308 (2007)

    Article  Google Scholar 

  10. Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. In: Proceedings of the 29th annual conference on computer graphics and interactive techniques, pp. 267–276 (2002)

  11. Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., Myszkowski, K.: High dynamic range imaging: acquisition, display, and image-based lighting, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2010)

  12. Banterle, F., Artusi, A., Debattista, K., Chalmers, A.: Advanced high dynamic range imaging: theory and practice. A. K. Peters, Ltd, Natick, MA, USA (2011)

  13. Vytla, L., Hassan, F., Carletta, J.E.: A real-time implementation of gradient domain high dynamic range compression using a local Poisson solver. J. Real Time Image Process. 8(2), 153–167 (2013)

    Article  Google Scholar 

  14. Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. ACM Trans. Graph. 21(3), 249–256 (2002)

    Article  Google Scholar 

  15. Artusi, A., Bittner, J., Wimmer, M., Wilkie, A.: Delivering interactivity to complex tone mapping operators. In: Proceedings of eurographics symposium on rendering, pp. 38–44 (2003)

  16. Goodnight, N., Wang, R., Humphreys, G.: Computation on programmable graphics hardware. IEEE Comput. Graphics Appl. 25(5), 12–15 (2005)

    Article  Google Scholar 

  17. Slomp, M., Oliveira, M.M.: Real-time photographic local tone reproduction using summed-area tables. In: Proceedings of computer graphics international conference, pp. 82–91 (2008)

  18. Akyüz, A.O.: High dynamic range imaging pipeline on the GPU. J. Real Time Image Process. 10(2), 273–287 (2015)

    Article  MathSciNet  Google Scholar 

  19. Akil, M., Grandpierre, T., Perroton, L.: Real-time dynamic tone-mapping operator on GPU. J. Real Time Image Process. 7(3), 165–172 (2012)

    Article  Google Scholar 

  20. Ureña, R., Martínez-Cañada, P., Gómez-López, J.M., Morillas, C., Pelayo, F.: Real-time tone mapping on GPU and FPGA. EURASIP J. Image Video Process 2012(1), 1–15 (2012)

    Article  Google Scholar 

  21. Artusi, A., Akyüz, A.O., Roch, B., Michael, D., Chrysanthou, Y., Chalmers, A.: Selective local tone mapping. In: Proceedings of IEEE international conference on image processing, pp. 15–18 (2013)

  22. Aubry, M., Paris, S., Hasinoff, S.W., Kautz, J., Durand, F.: Fast local Laplacian filters: theory and applications. ACM Trans. Graphics 33(5), 167.1–167.14 (2014)

    Article  Google Scholar 

  23. Wang, Y.-W., Huang, W.-B.: A CUDA-enabled parallel algorithm for accelerating retinex. J. Real Time Image Process. 9(3), 407–425 (2014)

    Article  Google Scholar 

  24. Pattanaik, S.N., Tumblin, J., Yee, H., Greenberg, D.P.: Time-dependent visual adaptation for fast realistic display. In: Computer graphics (SIGGRAPH 2000 proceedings), pp. 47–54 (2000)

  25. Drago, F., Myszkowski, K., Annen, T., Chiba, N.: Adaptive logarithmic mapping for displaying high contrast scenes. In: Computer graphics forum (Eurographics 2003 conference proceedings), pp. 419–426 (2003)

  26. Irawan, P., Ferwerda, J.A., Marschner, S.R.: Perceptually based tone mapping of high dynamic range image streams. In: Euro-graphics symposium on rendering, pp. 231–242 (2005)

  27. NVIDIA’s GeForce 8800 GTX webpage. http://www.geforce.com/hardware/desktop-gpus/geforce-8800-gtx (2015). Accessed 10 Oct 2015

  28. NVIDIA’s ION graphic processors webpage. http://www.nvidia.com/object/sff_ion.html (2015). Accessed 10 Oct 2015

  29. NVIDIA’s GeForce GTX 560M webpage. http://www.geforce.com/hardware/notebook-gpus/geforce-gtx-560m (2015). Accessed 10 Oct 2015

  30. NVIDIA’s CUDA Toolkit webpage. http://www.nvidia.com/content/cuda/cuda-toolkit.html (2015). Accessed 10 Oct 2015

  31. NVIDIA’s Tesla C1060 Computing Processor Board Specification. http://www.nvidia.com/docs/IO/56483/Tesla_C1060_boardSpec_v03.pdf (2008). Accessed 10 Oct 2015

  32. Tsai, C.-Y., Chou, C.-H.: A novel simultaneous dynamic range compression and local contrast enhancement algorithm for digital video cameras. EURASIP Journal on Image and Video Processing 2011(6), 1–19 (2011)

    Google Scholar 

  33. Tsai, C.-Y., Huang, C.-H.: An adaptive dynamic range compression with local contrast enhancement algorithm for real-time color image enhancement. J. Real-Time Image Proc. 10(2), 255–272 (2015)

    Article  Google Scholar 

  34. Tao, L., Asari, V.K.: Adaptive and integrated neighborhood-dependent approach for nonlinear enhancement of color images. J. Electron. Imaging 14(4), 043006-1-043006-14 (2005)

  35. Reinhard, E., Kunkel, T., Marion, Y., Brouillat, J., Cozot, R., Bouatouch, K.: Image display algorithms for high and low dynamic range display devices. J. Soc. Inform. Display 15(12), 997–1014 (2007)

    Article  Google Scholar 

  36. Marsi, S., Impoco, G., Ukovich, A., Carrato, S., Ramponi, G.: Video enhancement and dynamic range control of HDR sequences for automotive applications. EURASIP J. Adv. Signal Process. 2007(080971), 1–9 (2007)

    MATH  Google Scholar 

  37. Tao, L., Tompkins, R., Asari, V. K.: An illuminance-reflectance model for nonlinear enhancement of color images. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, pp. 159–166 (2005)

  38. Unaldi, N., Asari, V.K., Rahman, Z.: Fast and robust wavelet-based dynamic range compression with local contrast enhancement. In: Proceedings of SPIE 6978, pp. 697805-1–697805-12 (2008)

  39. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of IEEE international conference on computer vision, pp. 839–846 (1998)

  40. Garnett, R., Huegerich, T., Chui, C., He, W.: A universal noise removal algorithm with an impulse detector. IEEE Trans. Image Process. 14(11), 1747–1754 (2005)

    Article  Google Scholar 

  41. Buades, A., Coll, B., Morel, J.-M.: Nonlocal image and movie denoising. Int. J. Comput. Vision 76(2), 123–139 (2008)

    Article  Google Scholar 

  42. NVIDIA performance primitives (NPP) webpage. https://developer.nvidia.com/npp (2015). Accessed 10 Oct 2015

  43. NVIDIA’s GeForce GTX 650 Ti webpage. http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-650ti (2015). Accessed 10 Oct 2015

  44. Ramponi, G., Strobel, N.K., Mitra, S.K., Yu, T.-H.: Nonlinear unsharp masking methods for image contrast enhancement. J. Electron. Imaging 5(3), 353–366 (1996)

    Article  Google Scholar 

  45. Munteanu, C., Rosa, A.: Gray-scale image enhancement as an automatic process driven by evolution. IEEE Trans. Syst. Man Cybern. B Cybern. 34(2), 1292–1298 (2004)

    Article  Google Scholar 

  46. Ghimire, D., Lee, J.: Nonlinear transfer function-based local approach for color image enhancement. IEEE Trans. Consum. Electron. 57(2), 858–865 (2011)

    Article  Google Scholar 

  47. Mahajan, S., Singh, A.: Evaluated the performance of integrated PCA & DCT based fusion using consistency verification & non-linear enhancement. Int. J Eng. Sci. Res. Technol. 3(4), 7073–7085 (2014)

    Google Scholar 

  48. The experimental results webpage. http://www.ee.tku.edu.tw/~RVLab/_Experiments/GPU_SDRCLCE/ExpResults.htm (2015). Accessed 10 Oct 2015

  49. Recovering high dynamic range radiance maps from photographs. http://www.pauldebevec.com/Research/HDR/ (2001). Accessed 10 Oct 2015

Download references

Acknowledgments

This work was supported by the National Science Council of Taiwan, ROC, under grant NSC 103-2221-E-032-068 and 103-2632-E-032-001-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Yi Tsai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, CY., Huang, CH. Real-time implementation of an adaptive simultaneous dynamic range compression and local contrast enhancement algorithm on a GPU. J Real-Time Image Proc 16, 321–337 (2019). https://doi.org/10.1007/s11554-015-0532-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-015-0532-4

Keywords

Navigation