Abstract
Dynamic range compression is a fundamental function required in digital video cameras and display monitors to improve the visual appeal of color images. This paper presents a real-time implementation of an algorithm for adaptive dynamic range compression and contrast enhancement on a graphics processing unit (GPU). To achieve this, we first designed an adaptive intensity transfer function to handle the enhancement of standard-dynamic-range (8 bits/channel) images with both low- and high-intensity. The proposed algorithm then combines the intensity transfer function with an existing simultaneous dynamic range compression and local contrast enhancement (SDRCLCE) algorithm for the simultaneous compression of dynamic range and enhancement of local contrast. To reach real-time performance in processing high-resolution color images, the proposed algorithm is implemented using an NVIDIA GeForce GTX 650 Ti GPU based on NVIDIA’s Compute Unified Device Architecture (CUDA) parallel programming running on a 3.33 GHz Intel Core i5-661 CPU. Compared with a LUT-accelerated implementation, the proposed GPU implementation was shown to accelerate the processing of 1024 × 1024 color images by 11.1 times and color images of 4096 × 4096 pixels by 7.5 times, including the cost of memory copy between the host and device.
Similar content being viewed by others
References
Jobson, D., Rahman, Z., Woodell, G.: A multiscale Retinex for bridging the gap between color images and human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)
Rahman, Z., Jobson, D., Woodell, G.: Retinex processing for automatic image enhancement. J. Electron. Imaging 13(1), 100–110 (2004)
Horiuchi, T., Tominaga, S.: HDR image quality enhancement based on spatially variant retinal response. EURASIP J. Image Video Process. 2010(438958), 1–11 (2010)
Chen, S.-H., Beghdadi, A.: Natural enhancement of color image. EURASIP J. Image Video Process. 2010(175203), 1–19 (2010)
Saponara, S., Fanucci, L., Marsi, S., Ramponi, G.: Algorithmic and architectural design for real-time and power-efficient Retinex image/video processing. J. Real Time Image Process. 1(4), 267–283 (2007)
Saponara, S., Fanucci, L., Marsi, S., Ramponi, G., Kammler, D., Witte, E.M.: Application-specific instruction-set processor for retinex-like image and video processing. IEEE Trans. Circuits Syst. II Exp. Briefs 54(7), 596–600 (2007)
Vonikakis, V., Andreadis, I., Gasteratos, A.: Fast centre-surround contrast modification. IET Image Process. 2(1), 19–34 (2008)
Iakovidou, C., Vonikakis, V., Andreadis, I.: FPGA implementation of a real-time biologically inspired image enhancement algorithm. J. Real Time Image Process. 3(4), 269–287 (2008)
Hassan, F., Carletta, J.E.: An FPGA-based architecture for a local tone-mapping operator. J. Real Time Image Process. 2(4), 293–308 (2007)
Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. In: Proceedings of the 29th annual conference on computer graphics and interactive techniques, pp. 267–276 (2002)
Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., Myszkowski, K.: High dynamic range imaging: acquisition, display, and image-based lighting, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2010)
Banterle, F., Artusi, A., Debattista, K., Chalmers, A.: Advanced high dynamic range imaging: theory and practice. A. K. Peters, Ltd, Natick, MA, USA (2011)
Vytla, L., Hassan, F., Carletta, J.E.: A real-time implementation of gradient domain high dynamic range compression using a local Poisson solver. J. Real Time Image Process. 8(2), 153–167 (2013)
Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. ACM Trans. Graph. 21(3), 249–256 (2002)
Artusi, A., Bittner, J., Wimmer, M., Wilkie, A.: Delivering interactivity to complex tone mapping operators. In: Proceedings of eurographics symposium on rendering, pp. 38–44 (2003)
Goodnight, N., Wang, R., Humphreys, G.: Computation on programmable graphics hardware. IEEE Comput. Graphics Appl. 25(5), 12–15 (2005)
Slomp, M., Oliveira, M.M.: Real-time photographic local tone reproduction using summed-area tables. In: Proceedings of computer graphics international conference, pp. 82–91 (2008)
Akyüz, A.O.: High dynamic range imaging pipeline on the GPU. J. Real Time Image Process. 10(2), 273–287 (2015)
Akil, M., Grandpierre, T., Perroton, L.: Real-time dynamic tone-mapping operator on GPU. J. Real Time Image Process. 7(3), 165–172 (2012)
Ureña, R., Martínez-Cañada, P., Gómez-López, J.M., Morillas, C., Pelayo, F.: Real-time tone mapping on GPU and FPGA. EURASIP J. Image Video Process 2012(1), 1–15 (2012)
Artusi, A., Akyüz, A.O., Roch, B., Michael, D., Chrysanthou, Y., Chalmers, A.: Selective local tone mapping. In: Proceedings of IEEE international conference on image processing, pp. 15–18 (2013)
Aubry, M., Paris, S., Hasinoff, S.W., Kautz, J., Durand, F.: Fast local Laplacian filters: theory and applications. ACM Trans. Graphics 33(5), 167.1–167.14 (2014)
Wang, Y.-W., Huang, W.-B.: A CUDA-enabled parallel algorithm for accelerating retinex. J. Real Time Image Process. 9(3), 407–425 (2014)
Pattanaik, S.N., Tumblin, J., Yee, H., Greenberg, D.P.: Time-dependent visual adaptation for fast realistic display. In: Computer graphics (SIGGRAPH 2000 proceedings), pp. 47–54 (2000)
Drago, F., Myszkowski, K., Annen, T., Chiba, N.: Adaptive logarithmic mapping for displaying high contrast scenes. In: Computer graphics forum (Eurographics 2003 conference proceedings), pp. 419–426 (2003)
Irawan, P., Ferwerda, J.A., Marschner, S.R.: Perceptually based tone mapping of high dynamic range image streams. In: Euro-graphics symposium on rendering, pp. 231–242 (2005)
NVIDIA’s GeForce 8800 GTX webpage. http://www.geforce.com/hardware/desktop-gpus/geforce-8800-gtx (2015). Accessed 10 Oct 2015
NVIDIA’s ION graphic processors webpage. http://www.nvidia.com/object/sff_ion.html (2015). Accessed 10 Oct 2015
NVIDIA’s GeForce GTX 560M webpage. http://www.geforce.com/hardware/notebook-gpus/geforce-gtx-560m (2015). Accessed 10 Oct 2015
NVIDIA’s CUDA Toolkit webpage. http://www.nvidia.com/content/cuda/cuda-toolkit.html (2015). Accessed 10 Oct 2015
NVIDIA’s Tesla C1060 Computing Processor Board Specification. http://www.nvidia.com/docs/IO/56483/Tesla_C1060_boardSpec_v03.pdf (2008). Accessed 10 Oct 2015
Tsai, C.-Y., Chou, C.-H.: A novel simultaneous dynamic range compression and local contrast enhancement algorithm for digital video cameras. EURASIP Journal on Image and Video Processing 2011(6), 1–19 (2011)
Tsai, C.-Y., Huang, C.-H.: An adaptive dynamic range compression with local contrast enhancement algorithm for real-time color image enhancement. J. Real-Time Image Proc. 10(2), 255–272 (2015)
Tao, L., Asari, V.K.: Adaptive and integrated neighborhood-dependent approach for nonlinear enhancement of color images. J. Electron. Imaging 14(4), 043006-1-043006-14 (2005)
Reinhard, E., Kunkel, T., Marion, Y., Brouillat, J., Cozot, R., Bouatouch, K.: Image display algorithms for high and low dynamic range display devices. J. Soc. Inform. Display 15(12), 997–1014 (2007)
Marsi, S., Impoco, G., Ukovich, A., Carrato, S., Ramponi, G.: Video enhancement and dynamic range control of HDR sequences for automotive applications. EURASIP J. Adv. Signal Process. 2007(080971), 1–9 (2007)
Tao, L., Tompkins, R., Asari, V. K.: An illuminance-reflectance model for nonlinear enhancement of color images. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, pp. 159–166 (2005)
Unaldi, N., Asari, V.K., Rahman, Z.: Fast and robust wavelet-based dynamic range compression with local contrast enhancement. In: Proceedings of SPIE 6978, pp. 697805-1–697805-12 (2008)
Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of IEEE international conference on computer vision, pp. 839–846 (1998)
Garnett, R., Huegerich, T., Chui, C., He, W.: A universal noise removal algorithm with an impulse detector. IEEE Trans. Image Process. 14(11), 1747–1754 (2005)
Buades, A., Coll, B., Morel, J.-M.: Nonlocal image and movie denoising. Int. J. Comput. Vision 76(2), 123–139 (2008)
NVIDIA performance primitives (NPP) webpage. https://developer.nvidia.com/npp (2015). Accessed 10 Oct 2015
NVIDIA’s GeForce GTX 650 Ti webpage. http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-650ti (2015). Accessed 10 Oct 2015
Ramponi, G., Strobel, N.K., Mitra, S.K., Yu, T.-H.: Nonlinear unsharp masking methods for image contrast enhancement. J. Electron. Imaging 5(3), 353–366 (1996)
Munteanu, C., Rosa, A.: Gray-scale image enhancement as an automatic process driven by evolution. IEEE Trans. Syst. Man Cybern. B Cybern. 34(2), 1292–1298 (2004)
Ghimire, D., Lee, J.: Nonlinear transfer function-based local approach for color image enhancement. IEEE Trans. Consum. Electron. 57(2), 858–865 (2011)
Mahajan, S., Singh, A.: Evaluated the performance of integrated PCA & DCT based fusion using consistency verification & non-linear enhancement. Int. J Eng. Sci. Res. Technol. 3(4), 7073–7085 (2014)
The experimental results webpage. http://www.ee.tku.edu.tw/~RVLab/_Experiments/GPU_SDRCLCE/ExpResults.htm (2015). Accessed 10 Oct 2015
Recovering high dynamic range radiance maps from photographs. http://www.pauldebevec.com/Research/HDR/ (2001). Accessed 10 Oct 2015
Acknowledgments
This work was supported by the National Science Council of Taiwan, ROC, under grant NSC 103-2221-E-032-068 and 103-2632-E-032-001-MY3.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tsai, CY., Huang, CH. Real-time implementation of an adaptive simultaneous dynamic range compression and local contrast enhancement algorithm on a GPU. J Real-Time Image Proc 16, 321–337 (2019). https://doi.org/10.1007/s11554-015-0532-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-015-0532-4