Skip to main content
Log in

Hybrid multi-GPU computing: accelerated kernels for segmentation and object detection with medical image processing applications

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

In the last two decades, we have seen an amazing development of image processing techniques targeted for medical applications. We propose multi-GPU-based parallel real-time algorithms for segmentation and shape-based object detection, aiming at accelerating two medical image processing methods: automated blood detection in wireless capsule endoscopy (WCE) images and automated bright lesion detection in retinal fundus images. In the former method we identified segmentation and object detection as being responsible for consuming most of the global processing time. While in the latter, as segmentation was not used, shape-based object detection was the compute-intensive task identified. Experimental results show that the accelerated method running on multi-GPU systems for blood detection in WCE images is on average 265 times faster than the original CPU version and is able to process 344 frames per second. By applying the multi-GPU framework for bright lesion detection in fundus images we are able to process 62 frames per second with a speedup average 667 times faster than the equivalent CPU version.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Akram, M.U., Tariq, A., Khan, S.A., Javed, M.Y.: Automated detection of exudates and macula for grading of diabetic macular edema. Comput Methods Program Biomed 114, 141–152 (2014)

    Article  Google Scholar 

  2. Bashar, M., Kitasaka, T., Suenaga, Y., Mekada, Y., Mori, K.: Automatic detection of informative frames from wireless capsule endoscopy images. Med Image Anal14, 449–470 (2010)

    Article  Google Scholar 

  3. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. J Math. Imaging Vis. 28, 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  4. Chittajallu, D., Paragios, N., Kakadiaris, I.: An explicit shape-constrained mrf-based contour evolution method for 2-d medical image segmentation. Biomed Health Inform IEEE J18(1), 120–129 (2014). doi:10.1109/JBHI.2013.2257820

    Article  Google Scholar 

  5. Coimbra, M., Cunha, J.: MPEG-7 visual descriptors-contributions for automated feature extraction in capsule endoscopy. IEEE Trans Circuits Sys Video Technol 16, 628–637 (2006)

    Article  Google Scholar 

  6. Cui, L., Hu, C., Zou, Y., Meng, M.Q.H.: Bleeding detection in wireless capsule endoscopy images by support vector classifier. In: Proceedings of the 2010 IEEE Conference on Information and Automation, pp. 1746–1751. Harbin, China (2010)

  7. Cunha, J.P.S., Coimbra, M., Campos, P., Soares, J.M.: Automated topographic segmentation and transit time estimation in endoscopic capsule exams. IEEE Trans Med Imag 27, 19–27 (2008)

    Article  Google Scholar 

  8. Eklund, A., Dufort, P., Forsberg, D., LaConte, S.M.: Medical image processing on the GPU past, present and future. Med Image Anal 17(8), 1073–1094 (2013). doi:10.1016/j.media.2013.05.008

    Article  Google Scholar 

  9. Eum, S., Jung, H.: Enhancing light blob detection for intelligent headlight control using lane detection. Intelligent Transportation Systems, Intell Transp Sys IEEE Trans 14(2), 1003–1011 (2013). doi:10.1109/TITS.2012.2233736

    Article  Google Scholar 

  10. Figueiredo, I.N., Kumar, S.: Wavelet-based computer-aided detection of bright lesions in retinal fundus images. In: Y. Zhang, J. Tavares (eds.) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications, Lecture Notes in Computer Science, vol. 8641, pp. 234–240 (2014)

  11. Figueiredo, I.N., Kumar, S., Figueiredo, P.N.: An intelligent system for polyp detection in wireless capsule endoscopy images. In: Computational Vision and Medical Image Processing IV: VIPIMAGE 2013, pp. 229–235, ISBN: 9781315812922. Madeira Island, Funchal, Portugal (2013)

  12. Figueiredo, I.N., Kumar, S., Leal, C., Figueiredo, P.N.: An automatic blood detection algorithm for wireless capsule endoscopy images. In: Computational Vision and Medical Image Processing IV: VIPIMAGE 2013, pp. 237–241, ISBN: 9781315812922. Madeira Island, Portugal (2013)

  13. Figueiredo, I.N., Kumar, S., Leal, C., Figueiredo, P.N.: Computer-assisted bleeding detection in wireless capsule endoscopy images. Comput Methods Biomech Biomed Eng Imaging Visual 1, 198–210 (2013)

  14. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Medical Image Computing and Computer-Assisted Intervention, pp. 130–137. Cambridge (1998)

  15. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. In: Proceedings of the IEEE, vol. 93(2), 216–231 (2005). (Special issue on “Program Generation, Optimization, and Platform Adaptation”)

  16. Gerig, G., Szekely, G., Israel, G., Berger, M.: Detection and characterization of unsharp blobs by curve evolution. In. In Proceedings of Information Processing in Medical Imaging, pp. 165–176 (1995)

  17. Giitsidis, T., Karakasis, E., Gasteratos, A., Sirakoulis, G.: Human and fire detection from high altitude uav images. In: Parallel, Distributed and Network-Based Processing (PDP), 2015 23rd Euromicro International Conference on, pp. 309–315 (2015). doi:10.1109/PDP.2015.118

  18. Graca, C., Falcao, G., Kumar, S., Figueiredo, I.: Cooperative use of parallel processing with time or frequency-domain filtering for shape recognition. In: Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European, pp. 2085–2089 (2014)

  19. Harris, M.: Optimizing parallel reduction in cuda (2007)

  20. Karasev, P., Kolesov, I., Fritscher, K., Vela, P., Mitchell, P., Tannenbaum, A.: Interactive medical image segmentation using pde control of active contours. Med Imaging IEEE Trans 32(11), 2127–2139 (2013). doi:10.1109/TMI.2013.2274734

    Article  Google Scholar 

  21. Kirsanov, A., Vavilin, A., Jo, K.: Contour-based algorithm for vectorization of satellite images. In: 2010 International Forum on Strategic Technology (IFOST), pp. 241–245 (2010). doi:10.1109/IFOST.2010.5668109

  22. Krause, M., Alles, R., Burgeth, B., Weickert, J.: Fast retinal vessel analysis. J Real Time Image Process pp. 1–10 (2013). doi:10.1007/s11554-013-0342-5

  23. Kumar, S., Figueiredo, I.N., Graca, C., Falcao, G.: A gpu accelerated algorithm for blood detection in wireless capsule endoscopy images. In: J.M.R.S. Tavares, R. Natal Jorge (eds.) Developments in Medical Image Processing and Computational Vision, Lecture Notes in Computational Vision and Biomechanics, vol. 19, pp. 55–71. Springer International Publishing (2015). doi:10.1007/978-3-319-13407-9_4

  24. Lee, H., Harris, M., Young, E., Podlozhnyuk, V.: Image convolution with CUDA. NVIDIA corporation (2007)

  25. Lee, J.K., Wood, B., Newman, T.: Very fast ellipse detection using gpu-based rht. In: 19th International Conference on Pattern Recognition, ICPR 2008. pp. 1–4 (2008). doi:10.1109/ICPR.2008.4761168

  26. Li, B., Q.-H-Meng, M.: Computer-aided detection of bleeding regions for capsule endoscopy images. In: IEEE Transactions on Biomedical Engineering, vol. 56, pp. 1032–1039 (2009)

  27. Li, G., Liu, T., Nie, J., Guo, L., Malicki, J., Mara, A., Holley, S.A., Xia, W., Wong, S.T.: Detection of blob objects in microscopic zebrafish images based on gradient vector diffusion. Cytometry Part A 71(10), 835–845 (2007)

    Article  Google Scholar 

  28. Li, J., Lu, Y., Pu, B., Xie, Y., Qin, J., Pang, W.M., Heng, P.A.: Accelerating active shape model using gpu for facial extraction in video. In: IEEE International Conference on Intelligent Computing and Intelligent Systems, ICIS 2009, vol. 4, pp. 522–526 (2009). doi:10.1109/ICICISYS.2009.5357636

  29. Li, J., Narayanan, R.: A shape-based approach to change detection of lakes using time series remote sensing images. Geosci Remote Sens IEEE Trans 41(11), 2466–2477 (2003). doi:10.1109/TGRS.2003.817267

    Article  Google Scholar 

  30. Liedlgruber, M., Uhl, A.: Computer-aided decision support systems for endoscopy in the gastrointestinal tract: a review. IEEE Rev Biomed Eng 4, 73–88 (2011)

    Article  Google Scholar 

  31. Mahmoudi, S., Lecron, F., Manneback, P., Benjelloun, M., Mahmoudi, S.: Gpu-based segmentation of cervical vertebra in x-ray images. In: Cluster Computing Workshops and Posters (CLUSTER WORKSHOPS), 2010 IEEE International Conference on, pp. 1–8 (2010). doi:10.1109/CLUSTERWKSP.2010.561310210.1109/CLUSTERWKSP.2010.5613102

  32. Manniesing, R., Viergever, M.A., Niessen, W.J.: Vessel enhancing diffusion: a scale space representation of vessel structures. Med Image Anal 10(6), 815–825 (2006)

    Article  Google Scholar 

  33. Martins, M., Falcao, G., Figueiredo, I.N.: Fast aberrant crypt foci segmentation on the GPU. In: ICASSP’13: Proceedings of the 36th IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE (2013)

  34. Melo, R., Barreto, J., Falcao, G.: A new solution for camera calibration and real-time image distortion correction in medical endoscopy initial technical evaluation. Biomed Eng IEEE Trans 59(3), 634–644 (2012). doi:10.1109/TBME.2011.2177268

    Article  Google Scholar 

  35. Melo, R., Falcao, G., Barreto, J.: Real-time hd image distortion correction in heterogeneous parallel computing systems using efficient memory access patterns. J Real Time Image Process pp. 1–9 (2012). doi:10.1007/s11554-012-0304-3

  36. Messay, T., Hardie, R.C., Tuinstra, T.R.: Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the lung image database consortium and image database resource initiative dataset. Med Image Anal 22(1), 48–62 (2015). doi:10.1016/j.media.2015.02.002

    Article  Google Scholar 

  37. Minor, L.G., Sklansky, J.: The detection and segmentation of blobs in infrared images. Sys Man Cybern IEEE Trans 11(3), 194–201 (1981). doi:10.1109/TSMC.1981.4308652

    Article  Google Scholar 

  38. Mobahi, H., Rao, S., Yang, A., Sastry, S., Ma, Y.: Segmentation of natural images by texture and boundary compression. Int J Comput Vis 95(1), 86–98 (2011). doi:10.1007/s11263-011-0444-0

    Article  Google Scholar 

  39. Moon, W.K., Shen, Y.W., Bae, M.S., Huang, C.S., Chen, J.H., Chang, R.F.: Computer-aided tumor detection based on multi-scale blob detection algorithm in automated breast ultrasound images. Med Imaging IEEE Trans 32(7), 1191–1200 (2013). doi:10.1109/TMI.2012.2230403

    Article  Google Scholar 

  40. Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognit 26(9), 1277–1294 (1993). doi:10.1016/0031-3203(93)90135-J

    Article  Google Scholar 

  41. Pan, G., Xu, F., Chen, J.: A novel algorithm for color similarity measurement and the application for bleeding detection in WCE. I.J. Image Graph Signal Process 5, 1–7 (2011)

  42. Penna, B., Tilloy, T., Grangettoz, M., Magli, E., Olmo, G.: A technique for blood detection in wireless capsule endoscopy images. In: 17th European Signal Processing Conference (EUSIPCO 2009), pp. 1864–1868 (2009)

  43. Podlozhnyuk, V., Harris, M., Young, E.: NVIDIA CUDA C programming guide. NVIDIA Corporation (2012)

  44. Qi, X., Xing, F., Foran, D., Yang, L.: Robust segmentation of overlapping cells in histopathology specimens using parallel seed detection and repulsive level set. Biomed Eng IEEE Trans 59(3), 754–765 (2012). doi:10.1109/TBME.2011.2179298

    Article  Google Scholar 

  45. Shams, R., Sadeghi, P., Kennedy, R., Hartley, R.: A survey of medical image registration on multicore and the gpu. Signal Process Mag IEEE 27(2), 50–60 (2010). doi:10.1109/MSP.2009.935387

    Article  Google Scholar 

  46. Smistad, E., Elster, A., Lindseth, F.: Gpu accelerated segmentation and centerline extraction of tubular structures from medical images. Int J Comput Assist Radiol Surg 9(4), 561–575 (2014). doi:10.1007/s11548-013-0956-x

    Article  Google Scholar 

  47. Smistad, E., Falch, T.L., Bozorgi, M., Elster, A.C., Lindseth, F.: Medical image segmentation on GPUs a comprehensive review. Med Image Anal 20(1), 1–18 (2015). doi:10.1016/j.media.2014.10.012

    Article  Google Scholar 

  48. Sofka, M., Zhang, J., Good, S., Zhou, S., Comaniciu, D.: Automatic detection and measurement of structures in fetal head ultrasound volumes using sequential estimation and integrated detection network (idn). Med Imag IEEE Trans 33(5), 1054–1070 (2014). doi:10.1109/TMI.2014.2301936

    Article  Google Scholar 

  49. Usman, AM., Khalid, S., Tariq, A., Khan, S.A., Azam, F.: Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput Biol Med 45, 161–71 (2014)

  50. Williams, D., Codreanu, V., Roerdink, J., Yang, P., Liu, B., Dong, F., Chiarini, A.: Accelerating colonic polyp detection using commodity graphics hardware. In: Computer Medical Applications (ICCMA), 2013 International Conference on, pp. 1–6 (2013). doi:10.1109/ICCMA.2013.6506147

  51. Zhang, Q., Skjetne, R.: Image processing for identification of sea-ice floes and the floe size distributions. Geosci Remote Sens IEEE Trans 53(5), 2913–2924 (2015)

    Article  Google Scholar 

  52. Zhang, X., Thibault, G., Decencire, E., Marcotegui, B., La, B., Danno, R., Cazuguel, G., Quellec, G., Lamard, M., Massin, P., Chabouis, A., Victor, Z., Erginay, A.: Exudate detection in color retinal images for mass screening of diabetic retinopathy. Medical Image Anal 18, 1026–1043 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by project PTDC/MATNAN/0593/2012 and also by CMUC and FCT (Portugal), through European program COMPETE/FEDER and project PEst-C/MAT/UI0324/2011. The work was also supported by Instituto de Telecomunicações under project UID/EEA/50008/2013 and carried out at the Multimedia Signal Processing Lab, a GPU/CUDA Research Center from the University of Coimbra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Falcao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graca, C., Falcao, G., Figueiredo, I.N. et al. Hybrid multi-GPU computing: accelerated kernels for segmentation and object detection with medical image processing applications. J Real-Time Image Proc 13, 227–244 (2017). https://doi.org/10.1007/s11554-015-0517-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-015-0517-3

Keywords

Navigation