Skip to main content
Log in

Efficient registration of 2D points to CAD models for real-time applications

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Efficient registration is a major challenge for real-time machine vision applications. Modern acquisition hardware can produce data at extremely high rates. Thus, efficient registration algorithms are required to align data to reference models to detect deviations and take correcting actions if needed. In this work, an efficient registration procedure of 2D points to CAD (computer-aided design) models is proposed. Recent developments in the field are reviewed and evaluated in terms of accuracy, speed and robustness. Efficient algorithms are proposed for the most computationally expensive parts of the registration, including an estimation of the rigid transform, a calculation of the closest point to geometric primitives, and an estimation of the surface normal. Furthermore, a novel primitive caching procedure is proposed that, when combined with an R-tree, greatly improves the execution speed of the registration. The result is a very accurate registration procedure, since geometric primitives are treated analytically with no point sampling required. At the same time, the proposed procedure is robust, very fast, and can achieve the correct registration in less than one millisecond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. Symposium on geometry processing 2(3), 5 (2005)

  2. Varady, T., Martin, R.R., Cox, J.: Reverse engineering of geometric modelsan introduction. Comput Aided Design 29(4), 255–268 (1997)

    Article  Google Scholar 

  3. Raja, V., Fernandes, K.J.: Reverse engineering: an industrial perspective. Springer (2007)

  4. Pieraccini, M., Guidi, G., Atzeni, C.: 3d digitizing of cultural heritage. J Cult Heritage 2(1), 63–70 (2001)

    Article  Google Scholar 

  5. Vlahakis, V., Ioannidis, N., Karigiannis, J., Tsotros, M., Gounaris, M., Stricker, D., Gleue, T., Daehne, P., Almeida, L.: Archeoguide: an augmented reality guide for archaeological sites. IEEE Comput Graphics Appl 22(5), 52–60 (2002)

    Article  Google Scholar 

  6. Wang, C.-C., Thorpe, C., Thrun, S., Hebert, M., Durrant-Whyte, H.: Simultaneous localization, mapping and moving object tracking. Int J Robot Res 26(9), 889–916 (2007)

    Article  Google Scholar 

  7. Goldfeder, C., Ciocarlie, M., Peretzman, J., Dang, H., Allen, P.K.: Data-driven grasping with partial sensor data. in Intelligent Robots and Systems: IROS 2009. IEEE/RSJ International Conference on. IEEE 2009, 1278–1283 (2009)

  8. Bowyer, K.W., Chang, K., Flynn, P.: A survey of approaches and challenges in 3d and multi-modal 3d+ 2d face recognition. Comput Vis Image Understand 101(1), 1–15 (2006)

    Article  Google Scholar 

  9. Castellani, U., Bartoli, A.: “3d shape registration,” in 3D Imaging, Analysis and Applications. Springer, pp. 221–264 (2012)

  10. Salvi, J., Pages, J., Batlle, J.: Pattern codification strategies in structured light systems. Pattern Recogn 37(4), 827–849 (2004)

    Article  MATH  Google Scholar 

  11. Studholme, C., Hill, D.L., Hawkes, D.J.: Automated 3-d registration of mr and ct images of the head. Medical Image Anal 1(2), 163–175 (1996)

    Article  Google Scholar 

  12. Salvi, J., Matabosch, C., Fofi, D., Forest, J.: A review of recent range image registration methods with accuracy evaluation. Image Vis Comput 25(5), 578–596 (2007)

    Article  Google Scholar 

  13. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans Pattern Anal Mach Intell 14(2), 239–256 (1992)

    Article  Google Scholar 

  14. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vis Comput 10(3), 145–155 (1992)

    Article  Google Scholar 

  15. Li, H., Sumner, R.W., Pauly, M.: “Global correspondence optimization for non-rigid registration of depth scans,” in Computer Graphics Forum, vol. 27, no. 5., pp. 1421–1430. Wiley Online Library (2008)

  16. Pulli, K.: Multiview registration for large data sets. in 3-D Digital Imaging and Modeling. In: Proceedings. Second International Conference on. IEEE 1999, 160–168 (1999)

  17. Jost, T., Hugli, H.: A multi-resolution icp with heuristic closest point search for fast and robust 3d registration of range images. In: 3-D Digital Imaging and Modeling: 3DIM 2003. Proceedings. Fourth International Conference on. IEEE 2003, 427–433 (2003)

  18. Fitzgibbon, A.W.: Robust registration of 2d and 3d point sets. Image Vis Comput 21(13), 1145–1153 (2003)

    Article  Google Scholar 

  19. Rangarajan, A., Chui, H., Mjolsness, E., Pappu, S., Davachi, L., Goldman-Rakic, P., Duncan, J.: A robust point-matching algorithm for autoradiograph alignment. Medical Image Anal 1(4), 379–398 (1997)

    Article  Google Scholar 

  20. Sharp, G.C., Lee, S.W., Wehe, D.K.: Icp registration using invariant features. Pattern Anal Mach Intell IEEE Trans 24(1), 90–102 (2002)

    Article  Google Scholar 

  21. Park, S.-Y., Subbarao, M.: An accurate and fast point-to-plane registration technique. Pattern Recogn Lett 24(16), 2967–2976 (2003)

    Article  Google Scholar 

  22. Rusinkiewicz, S., Levoy, M.: “Efficient variants of the icp algorithm,” in 3-D Digital Imaging and Modeling. Proceedings 3rd International Conference on IEEE, 145–152 (2001)

  23. Nuchter, A., Lingemann, K., Hertzberg, J.: Cached kd tree search for icp algorithms. In: 3-D Digital Imaging and Modeling: 3DIM’07. Sixth International Conference on. IEEE 2007, 419–426 (2007)

  24. Park, I.K., Germann, M., Breitenstein, M.D., Pfister, H.: Fast and automatic object pose estimation for range images on the gpu. Mach Vis Appl 21(5), 749–766 (2010)

    Article  Google Scholar 

  25. Esteghamatian, M., Azimifar, Z., Radau, P., Wright, G.: Real time cardiac image registration during respiration: a time series prediction approach. J Real Time Image Process 8(2), 179–191 (2013)

    Article  Google Scholar 

  26. Usamentiaga, R., Molleda, J., García, D.F.: Fast and robust laser stripe extraction for 3d reconstruction in industrial environments. Mach Vis Appl 23(1), 179–196 (2012)

    Article  Google Scholar 

  27. Kehtarnavaz, N., Gamadia, M.: Real-time image and video processing: from research to reality. Synthesis Lectures on Image, Video & Multimedia Processing 2(1), 1–108 (2006)

  28. Arun, K., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-d point sets. Patt. Anal. Machine. Intell. IEEE. Trans. 5, 698–700 (1987)

  29. Elseberg, J., Magnenat, S., Siegwart, R., Nüchter, A.: Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration. J Software Eng Robot 3(1), 2–12 (2012)

    Google Scholar 

  30. Bentley, J.L.: “K-d trees for semidynamic point sets,” in Proceedings of the sixth annual symposium on Computational geometry. ACM, pp. 187–197 (1990)

  31. Jia, Y., Wang, J., Zeng, G., Zha, H., Hua, X.-S.:Optimizing kd-trees for scalable visual descriptor indexing in Computer Vision and Pattern Recognition (CVPR), IEEE Conference, 3392–3399 (2010)

  32. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional data. Patt. Anal. Machine. Intell. IEEE. Trans. 36, (2014)

  33. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press, (2003)

  34. Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-d rigid body transformations: a comparison of four major algorithms. Mach Vis Appl 9(5–6), 272–290 (1997)

    Article  Google Scholar 

  35. Gower, J.C., Dijksterhuis, G.B.: Procrustes problems. Oxford University Press, Oxford, vol. 3 (2004)

  36. Challis, J.H.: A procedure for determining rigid body transformation parameters. J Biomech 28(6), 733–737 (1995)

    Article  Google Scholar 

  37. Schneider, P., Eberly, D.H.: Geometric tools for computer graphics. Morgan Kaufmann (2002)

  38. Hill, J.F.: “The pleasures of perp dot products,” in Graphics gems IV. Academic Press, San Diego (1994)

    Google Scholar 

  39. Guttman, A.: R-trees: a dynamic index structure for spatial searching. ACM, vol. 14, no. 2 (1984)

  40. Simon, D.: “Fast and accurate shape-based registration,” Ph.D. dissertation, Robotics Institute, Carnegie Mellon University, Pittsburgh (1996)

  41. Klasing, K., Althoff, D., Wollherr, D., Buss, M.: Comparison of surface normal estimation methods for range sensing applications. in Robotics and Automation, : ICRA’09. IEEE International Conference on. IEEE 2009, 3206–3211 (2009)

  42. Woo, H., Kang, E., Wang, S., Lee, K.H.: A new segmentation method for point cloud data. Int J Mach Tools Manufact 42(2), 167–178 (2002)

    Article  Google Scholar 

  43. Yau, H.-T., Kuo, C.-C., Yeh, C.-H.: Extension of surface reconstruction algorithm to the global stitching and repairing of stl models. Comput Aided Design 35(5), 477–486 (2003)

    Article  Google Scholar 

  44. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Computing and rendering point set surfaces. Visualization and Computer Graphics, IEEE Transactions on 9(1), 3–15 (2003)

  45. OuYang, D., Feng, H.-Y.: On the normal vector estimation for point cloud data from smooth surfaces. Comput Aided Design 37(10), 1071–1079 (2005)

    Article  Google Scholar 

  46. Mitra, N.J., Nguyen, A., Guibas, L.: Estimating surface normals in noisy point cloud data. Int J Comput Geometry Appl 14(04n05), 261–276 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Berkmann, J., Caelli, T.: Computation of surface geometry and segmentation using covariance techniques. Pattern Analysis and Machine Intelligence, IEEE Transactions on 16(11), 1114–1116 (1994)

  48. Phillips, J.M., Liu, R., Tomasi, C.: Outlier robust icp for minimizing fractional rmsd. in 3-D Digital Imaging and Modeling, : 3DIM’07. Sixth International Conference on. IEEE 2007, 427–434 (2007)

  49. Castellani, U., Fusiello, A., Murino, V.: Registration of multiple acoustic range views for underwater scene reconstruction. Comput Vis Image Understand 87(1), 78–89 (2002)

    Article  MATH  Google Scholar 

  50. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust statistics: the approach based on influence functions. John Wiley & Sons, vol. 114 (2011)

  51. Masuda, T., Sakaue, K., Yokoya, N.: “Registration and integration of multiple range images for 3-d model construction,” in Pattern Recognition. In: Proceedings of the 13th International Conference on, vol. 1. IEEE, pp. 879–883 (1996)

  52. Turk, G., Levoy, M.: “Zippered polygon meshes from range images,” in Proceedings of the 21st annual conference on Computer graphics and interactive techniques. ACM, pp. 311–318 (1994)

Download references

Acknowledgments

This work has been partially funded by the project TIN2001-24903 of the Spanish National Plan for Research, Development and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Usamentiaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usamentiaga, R., García, D.F. & Molleda, J. Efficient registration of 2D points to CAD models for real-time applications. J Real-Time Image Proc 15, 329–347 (2018). https://doi.org/10.1007/s11554-015-0485-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-015-0485-7

Keywords

Navigation