Journal of Real-Time Image Processing

, Volume 11, Issue 4, pp 693–711 | Cite as

A survey on real-time motion estimation techniques for underwater robots

  • Fausto FerreiraEmail author
  • Gianmarco Veruggio
  • Massimo Caccia
  • Gabriele Bruzzone
Special Issue Paper


Over the last few years, we have assisted to an impressive evolution in the state-of-the-art of feature extraction, description and matching. Feature matching-based methods are among the most popular approaches to the problem of motion estimation. Thus, the need of studying the evolution of the feature matching field arises naturally. The application chosen is the motion estimation of a Remotely Operated Vehicle (ROV). A challenging environment such as an underwater environment is an excellent test bed to evaluate the performance of the several recent developed feature extractors and descriptors. The algorithms were tested using the same open source framework to give a fair assessment of their performance especially in terms of computational time. The various possible combinations of algorithms were compared to an approach developed by the authors that showed good performance in the past. A data set collected by the ROV Romeo in typical operations is used to test the methods. Quantitative results in terms of robustness to noise and computational time are presented and demonstrate that the recent trend of binary features is very promising.


Motion estimation Real-time ROVs Binary features BRIEF 



The authors wish to thank Riccardo Bono, Giorgio Bruzzone and Edoardo Spirandelli for their highly professional and kind support in the development and operation at sea of the Romeo ROV.


  1. 1.
    Agrawal, M., Konolige, K., Blas, M.: CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) Computer Vision ECCV 2008. Lecture Notes in Computer Science, vol. 5305, pp. 102–115. Springer, Berlin, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK : Fast retina keypoint. IEEE conference on computer vision and pattern recognition, pp. 510–517 (2012).
  3. 3.
    Alvarez, L., Castaño, C., García, M., Krissian, K., Mazorra, L., Salgado, A., Sánchez, J.: A new energy-based method for 3D motion estimation of incompressible PIV flows. Comput. Vis. Image Underst. 113(7):802–810 (2009).
  4. 4.
    Argyriou, V., Vlachos, T.: Extrapolation-free arbitrary-shape motion estimation using phase correlation. J. Electronic Imaging 15(1) (2006). doi: 10.1117/1.2170582 CrossRefGoogle Scholar
  5. 5.
    Ayuso, F., Botella, G., García, C., Prieto, M., Tirado, F.: GPU-based acceleration of bio-inspired motion estimation model. Concurr. Comput. Pract. Exp. 25(8):1037–1056 (2013). doi: 10.1002/cpe.2946,
  6. 6.
    Baralli, F., Couillard, M., Ortiz, J., Caldwell, D.G.: GPU-based real-time synthetic aperture sonar processing on-board autonomous underwater vehicles. In: 2013 MTS/IEEE OCEANS-Bergen, IEEE, pp. 1–8 (2013). doi: 10.1109/OCEANS-Bergen.6608158,
  7. 7.
    Barranco, F., Tomasi, M., Diaz, J., Vanegas, M., Ros, E.: Parallel architecture for hierarchical optical flow estimation based on FPGA. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(6):1058–1067 (2012). doi: 10.1109/TVLSI.2011.2145423,
  8. 8.
    Bay, H., Tuytelaars, T., Gool, L.V.: SURF: speeded up robust features. In: Proceedings of the 9th European conference on computer vision, Springer LNCS, vol 3951 part, pp. 404–417 (2006)Google Scholar
  9. 9.
    Bechlioulis, C.P., Karras, G.C., Nagappa, S., Palomeras, N., Kyriakopoulos, K.J., Carreras, M.: A robust visual servo control scheme with prescribed performance for an autonomous underwater vehicle. In: 2013 IEEE/RSJ International conference on intelligent robots and systems (IROS), Tokyo, pp. 3879–3884 (2013).Google Scholar
  10. 10.
    Botella, G., Meyer-Base, U., Garcia, A.: Bio-inspired robust optical flow processor system for VLSI implementation. Electron. Lett. 45(25):1304 (2009). doi: 10.1049/el.2009.1718,
  11. 11.
    Botella, G., Garcia, A., Rodriguez-Alvarez, M., Ros, E., Meyer-Baese, U., Molina, M.C.: Robust bioinspired architecture for optical-flow computation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18(4):616–629 (2010). doi: 10.1109/TVLSI.2009.2013957, Google Scholar
  12. 12.
    Botella, G., Meyer-Baese, U., García, A., Rodríguez, M.: Quantization analysis and enhancement of a VLSI gradient-based motion estimation architecture. Digitital Signal Processing 22(6):1174–1187 (2012). doi: 10.1016/j.dsp.2012.05.013,
  13. 13.
    Caccia, M.: Optical triangulation-correlation sensor for ROV slow motion estimation: experimental results (July 2002 at-sea trials). Rob-02, CNR-IAN (2002)Google Scholar
  14. 14.
    Caccia, M.: Laser-triangulation optical-correlation sensor for ROV slow motion estimation. IEEE J.Ocean. Eng. 31(3), 711–727 (2006)CrossRefGoogle Scholar
  15. 15.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis K, Maragos P, Paragios N (eds) Computer vision ECCV 2010, lecture notes in computer science, vol 6314, Springer, Berlin, Heidelberg, chapt. 56, pp. 778–792 (2010). doi: 10.1007/978-3-642-15561-1_56
  16. 16.
    Caselles, V., Garrido, L., Igual, L.: A contrast invariant approach to motion estimation. In: Kimmel R, Sochen N, Weickert J (eds) Scale Space and PDE Methods in Computer Vision, Lecture Notes in Computer Science, vol. 3459, Springer, Heidelberg, pp. 242–253 (2005). doi: 10.1007/11408031_21,
  17. 17.
    Cornelis, N., Van Gool, L.: Fast scale invariant feature detection and matching on programmable graphics hardware. In: Computer vision and pattern recognition workshops, 2008. CVPRW ’08. IEEE computer society conference on, pp. 1–8 (2008). doi: 10.1109/CVPRW.2008.4563087
  18. 18.
    Crawford, A., Denman, H., Kelly, F., Pitie, E., Kokaram, A.: Gradient based dominant motion estimation with integral projections for real time video stabilisation. In: 2004 International conference on image processing, 2004. ICIP ’04., IEEE, vol. 5, pp. 3371–3374 (2004). doi: 10.1109/ICIP.2004.1421837,
  19. 19.
    Cronje, J.: BFROST: binary features from robust orientation segment tests accelerated on the GPU. In: 22nd annual symposium of the pattern recognition association of South Africa (2011).
  20. 20.
    Diaz, J., Ros, E., Pelayo, F., Ortigosa, E., Mota, S.: FPGA-based real-time optical-flow system. IEEE Trans. Circuits Syst. Video Technol. 16(2):274–279 (2006). doi: 10.1109/TCSVT.2005.861947,
  21. 21.
    Ebrahimi, M., Mayol-Cuevas, W.: SUSurE: speeded up surround extrema feature detector and descriptor for realtime applications. In: 2009 IEEE computer society conference on computer vision and pattern recognition workshops, pp. 9–14 (2009). doi: 10.1109/CVPRW.2009.5204313,
  22. 22.
    Elad, M., Teo, P., Hel-Or, Y.: On the design of filters for gradient-based motion estimation. J. Math. Imaging Vis. 23(3):345–365 (2005). doi: 10.1007/s10851-005-2027-6,
  23. 23.
    Eustice, R.M., Pizarro, O., Singh, H.: Visually augmented navigation for autonomous underwater vehicles. IEEE J. Ocean. Eng. 33(2), 103–122 (2008)CrossRefGoogle Scholar
  24. 24.
    Ferreira, F., Veruggio, G., Caccia, M., Bruzzone, G.: Speeded up robust features for vision-based underwater motion estimation and SLAM: comparison with correlation-based techniques. In: Proceedings of MCMC’2009 (2009)Google Scholar
  25. 25.
    Ferreira, F., Orsenigo, F., Veruggio, G., Pavlakis, P., Caccia, M., Bruzzone, G.: Comparison between feature-based and phase correlation methods for ROV vision-based speed estimation. In: 7th symposium on intelligent autonomous vehicles, IFAC, Lecce, Italy (2010)Google Scholar
  26. 26.
    Ferreira, F., Veruggio, G., Caccia, M., Bruzzone, G.: A comparison between different feature-based methods for ROV vision-based speed estimation. In: IFAC workshop on navigation, guidance and control of underwater vehicles (ngcuv2012) (2012a)Google Scholar
  27. 27.
    Ferreira, F., Veruggio, G., Caccia, M., Bruzzone, G.: Comparing region-based and feature-based methods for ROV vision-based motion estimation. In: 9th IFAC conference on manoeuvring and control of marine craft (MCMC 2012) (2012b)Google Scholar
  28. 28.
    Ferreira, F., Veruggio, G., Caccia, M., Bruzzone, G.: Real-time optical SLAM-based mosaicking for unmanned underwater vehicles. Intelligent Service Robotics 5(1):55–71 (2012c). doi: 10.1007/s11370-011-0103-x CrossRefGoogle Scholar
  29. 29.
    Ferreira, F., Veruggio, G., Caccia, M., Bruzzone, G.: ROV vision-based motion estimation: a comparison study. In: 10th International IFAC symposium on robot, control (SYROCO2012) (2012d)Google Scholar
  30. 30.
    Ferreira, F., Veruggio, G., Caccia, M., Bruzzone, G.: Binary visual features for ROV motion estimation. In: OCEANS-Bergen, 2013 MTS/IEEE, pp. 1–7 (2013a). doi: 10.1109/OCEANS-Bergen.6608116
  31. 31.
    Ferreira, F., Veruggio, G., Caccia, M., Zereik, E., Bruzzone, G.: A real-time mosaicking algorithm using binary features for ROVs. In: control automation (MED), 2013 21st Mediterranean Conference on, pp. 1267–1273 (2013b). doi: 10.1109/MED.2013.6608882
  32. 32.
    Fischer, J., Ruppel, A., Weisshardt, F., Verl, A.: A rotation invariant feature descriptor O-DAISY and its FPGA implementation. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, IEEE, pp. 2365–2370 (2011). doi: 10.1109/IROS.2011.6094813,
  33. 33.
    Garcia-Fidalgo, E.: Experimental assessment of different image descriptors for topological map-building and scene recognition. Master thesis, Universitat de les Illes Balears (2011).
  34. 34.
    Gil, A., Mozos, O.M., Ballesta, M., Reinoso, O.: A comparative evaluation of interest point detectors and local descriptors for visual SLAM. Mach. Vis. Appl. 21(6):905–920 (2009). doi: 10.1007/s00138-009-0195-x,
  35. 35.
    Girdhar, Y., Giguere, P., Dudek, G.: Autonomous adaptive exploration using realtime online spatiotemporal topic modeling. Int. J. Robot. Res. 1–13 (2013). doi: 10.1177/0278364913507325,
  36. 36.
    Gracias, N.R., der Zwaan, S., Bernardino, A., Santos-Victor, J.: Mosaic-based navigation for autonomous underwater vehicles. IEEE J. Ocean. Eng. 28(4), 609–624 (2003)CrossRefGoogle Scholar
  37. 37.
    Guzmán, P., Díaz, J., Agís, R., Ros E.: Optical flow in a smart sensor based on hybrid analog-digital architecture. Sensors (Basel, Switzerland) 10(4):2975–2994 (2010). doi: 10.3390/s100402975,
  38. 38.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Taylor, C.J. (ed.) Procedings of the Alvey Vision Conference 1988, Alvey Vision Club, pp. 23.1–23.6 (1988). doi: 10.5244/C.2.23,
  39. 39.
    Honegger, D., Greisen, P., Meier, L., Tanskanen, P., Pollefeys, M.: Real-time velocity estimation based on optical flow and disparity matching. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, pp. 5177–5182 (2012). doi: 10.1109/IROS.2012.6385530,
  40. 40.
    Jin, H., Louis, S., Favaro, P., Soatto, S., Angeles, L.: Real-time feature tracking and outlier rejection with changes in illumination. In: Proceedings Eighth IEEE international conference on computer vision. ICCV 2001, IEEE Comput. Soc, vol 1, pp. 684–689 (2001). doi: 10.1109/ICCV.2001.937588,
  41. 41.
    Johnson-Roberson, M., Pizarro, O., Williams, S.B., Mahon, I.: Generation and visualization of large-scale three-dimensional reconstructions from underwater robotic surveys. J. Field. Robot. 27(1):21–51 (2010). doi: Google Scholar
  42. 42.
    Keller, Y., Averbuch, A.: Fast motion estimation using bidirectional gradient methods. IEEE Trans. Image Process. 13(8):1042–1054 (2004). doi: 10.1109/TIP.2004.823823,
  43. 43.
    Kudzinava, M.: Feature-based matching of underwater images. Master’s thesis, University of Girona (2007)Google Scholar
  44. 44.
    Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints (2011). doi: 10.1109/ICCV.2011.6126542,
  45. 45.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  46. 46.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: computer vision, 1999. The proceedings of the seventh IEEE international conference on, vol 2, pp. 1150–1157 (1999). doi: 10.1109/ICCV.1999.790410
  47. 47.
    Mainali, P., Lafruit, G., Yang, Q., Geelen, B., Gool, L.V., Lauwereins, R.: SIFER: Scale-Invariant Featur. Detect. Error Resil (2013). doi: 10.1007/s11263-013-0622-3 Google Scholar
  48. 48.
    Mair, E., Hager, G.D., Burschka, D., Suppa, M., Hirzinger, G.: Adaptive and generic corner detection based on the Accelerated Segment Test. In: Daniilidis K, Maragos P, Paragios N (eds) Computer vision ECCV 2010, lecture notes in computer science, vol 6312, Springer, Berlin, Heidelberg, pp. 183–196 (2010).
  49. 49.
    Misu, T., Hashimoto, T., Ninomiya, K.: Optical guidance for autonomous landing of spacecraft. IEEE Trans. Aerosp. Electron. Syst. 35(2), 459–473 (1999)CrossRefGoogle Scholar
  50. 50.
    Monson, J., Wirthlin, M., Hutchings, BL.: Implementing high-performance, low-power FPGA-based optical ow accelerators in C. In: 2013 IEEE 24th International Conference on Application-Specic Systems, Architectures and Processors, IEEE, pp. 363–369 (2013). doi: 10.1109/ASAP.2013.6567602,
  51. 51.
    Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: International conference on computer vision theory and application VISSAPP’09), INSTICC Press, pp. 331–340 (2009)Google Scholar
  52. 52.
    Muller, T., Rannacher, J., Rabe, C., Franke, U., Müller, T.: Feature- and depth-supported modified total variation optical flow for 3D motion field estimation in real scenes. CVPR 2011 pp. 1193–1200 (2011).
  53. 53.
    Negahdaripour, S., Xu, X.: Mosaic-based positioning and improved motion-estimation methods for automatic navigation of submersible vehicles. IEEE J. Ocean. Eng. 27(1), 79–99 (2002)CrossRefGoogle Scholar
  54. 54.
    Nicosevici, T., Garcia, R.: Online robust 3D mapping using structure from motion cues. In: OCEANS 2008-MTS/IEEE Kobe Techno-Ocean, pp. 1–7 (2008). doi: 10.1109/OCEANSKOBE.2008.4531022
  55. 55.
    Orsenigo, F., Sarantakos, K.: Tornado: an application for on-the-fly mosaicking through phase correlation. In: Proceedings of MCMC’2009 (2009)Google Scholar
  56. 56.
    Pauwels, K., Tomasi, M., Díaz, J., Ros, E., Van Hulle, M.M.: A comparison of FPGA and GPU for real-time phase-based optical flow, stereo, and local image features. IEEE Trans. Comput. 61(7):999–1012 (2012). doi: 10.1109/TC.2011.120,
  57. 57.
    Rosin, P.: Measuring corner properties. Comput. Vis. Image Underst. 73(2):291–307 (1999). doi: 10.1006/cviu.1998.0719,
  58. 58.
    Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking. IEEE Int. Conf. Comput. Vis. 2, 1508–1511 (2005). doi: 10.1109/ICCV.2005.104 Google Scholar
  59. 59.
    Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. Eur. Conf. Comput. Vis. 1, 430–443 (2006). doi: 10.1007/11744023_34 Google Scholar
  60. 60.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: International conference on computer vision, Barcelona (2011)Google Scholar
  61. 61.
    Shi, J., Tomasi, C.: Good features to track. In: Computer vision and pattern recognition, 1994. In: Proceedings CVPR ’94, 1994 IEEE computer society conference on, pp. 593–600 (1994). doi: 10.1109/CVPR.1994.323794
  62. 62.
    Shkurti, F., Rekleitis, I., Dudek, G.: Feature tracking evaluation for pose estimation in underwater environments. In: computer and robot vision (CRV), 2011 Canadian conference on, pp. 160–167 (2011). doi: 10.1109/CRV.2011.28
  63. 63.
    Sinha, S., Frahm, J.M., Pollefeys, M., Genc, Y.: Feature tracking and matching in video using programmable graphics hardware. Machine vision and applications (2007). doi: 10.1007/s00138-007-0105-z,
  64. 64.
    Spinei, A., Pellerin, D., Fernandes, D., Herault, J.: Fast hardware implementation of gabor filter based motion estimation. Integr. Comput. Aid. Eng. 7(1):67–77 (2000).
  65. 65.
    Stein, F.: Efficient computation of optical flow using the census transform. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese M.A. (eds) Pattern recognition, Springer, Berlin Heidelberg, chap. Lecture No., pp. 79–86 (2004). doi: 10.1007/978-3-540-28649-3_10
  66. 66.
    Thomas, S.J.: Real-time Stereo Visual SLAM. Master’s thesis, Heriot-Watt University, Universitat de Girona, Universite de Bourgogne (2008)Google Scholar
  67. 67.
    Tola, E., Lepetit, V., Fua, P.: DAISY: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5):815–30 (2010). doi: 10.1109/TPAMI.2009.77, Google Scholar
  68. 68.
    Torralba, A., Fergus, R., Weiss, Y., York, N.: Small codes and large image databases for recognition. In: 2008 IEEE Conf. Comput. Vis. Pattern Recognit., IEEE, pp. 1–8 (2008). doi: 10.1109/CVPR.2008.4587633,
  69. 69.
    Town, C., Marshall, A., Sethasathien, N.: Manta matcher: automated photographic identification of manta rays using keypoint features. Ecol Evolution 3(7):1902–1914 (2013). doi: 10.1002/ece3.587, Google Scholar
  70. 70.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Computer vision and pattern recognition, 2001. CVPR 2001. In: Proceedings of the 2001 IEEE computer society conference on, vol 1, pp. I-511–I-518 (2001). doi: 10.1109/CVPR.2001.990517
  71. 71.
    Wei, Z., Lee, D.J., Nelson, B.E., Archibald, J.K.: Real-time accurate optical flow-based motion sensor. In: 2008 19th international conference on pattern recognition, IEEE, pp. 1–4 (2008). doi: 10.1109/ICPR.2008.4761126,

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Fausto Ferreira
    • 1
    Email author
  • Gianmarco Veruggio
    • 1
  • Massimo Caccia
    • 2
  • Gabriele Bruzzone
    • 2
  1. 1.CNR-IEIITGenovaItaly
  2. 2.CNR-ISSIAGenovaItaly

Personalised recommendations