Journal of Real-Time Image Processing

, Volume 10, Issue 4, pp 741–757 | Cite as

A low-cost vehicle counter for next-generation ITS

  • Claudio Salvadori
  • Matteo Petracca
  • Stefano Bocchino
  • Riccardo Pelliccia
  • Paolo Pagano
Special Issue Paper

Abstract

This paper describes a vehicle counter application to be used in low-cost and low-complexity devices to be deployed in next-generation pervasive Intelligent Transport Systems. The first part of the paper introduces the Linesensor theory, which exploits the temporal redundancy of the movement to enable the processing of a 1D images (i.e. lines), thus reducing the complexity for extracting features and understanding the environment. Because of the high speed of the objects to be detected, the proposed application requires a very high frame rate and consequently an optimised design for the whole computer vision pipeline. For these reasons, in the second part of the paper, we propose a low-complexity background modelling algorithm permitting to extract information related to the whole image from a single metric. Our arguments demonstrate that the proposed algorithm has comparable performance in the segmentation operation as other state-of-the-art techniques, but reducing significantly the computational cost.

Keywords

Vehicle counter Background modelling Embedded computer vision Smart camera Computer vision applications for ITS 

References

  1. 1.
    The IPERMOB project: A Pervasive and Heterogeneous Infrastructure to control Urban Mobility in Real-Time. http://www.ipermob.org (2009)
  2. 2.
    Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theor. 52(2), 489–509 (2006)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Cheung, S.C.S., Kamath, C.: Robust techniques for background subtraction in urban traffic video. SPIE 5308, 881–892 (2004)Google Scholar
  4. 4.
    Chitnis, M., Liang, Y., Zheng, J.Y., Pagano, P., Lipari, G.: Wireless line sensor network for distributed visual surveillance. In: Proceedings of the ACM symposium on Performance evaluation of wireless ad hoc, sensor, and ubiquitous networks, pp. 71–78 (2009)Google Scholar
  5. 5.
    Chitnis, M., Salvadori, C., Petracca, M., Lipari, G., Pagano, P.: Traffic related observations by line sensing techniques. In: Proceedings of the ACM Conference on Embedded Networked Sensor Systems, pp. 373–374 (2010)Google Scholar
  6. 6.
    Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting moving objects, ghosts, and shadows in video streams. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1337–1342 (2003)CrossRefGoogle Scholar
  7. 7.
    Donoho, D.: Compressed sensing. IEEE Trans. Inform. Theor. 52(4), 1289 –1306 (2006)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Hung, M.H., Pan, J.S., Hsieh, C.H.: Speed up temporal median filter for background subtraction. In: Proceedings of the International Conference on Pervasive Computing, Signal Processing and Applications, pp. 297–300 (2010)Google Scholar
  9. 9.
    Iannizzotto, G., La Rosa, F., Lo Bello, L.: A wireless sensor network for distributed autonomous traffc monitoring. In: Proceedings of the International Conference in Human System Interactions, pp. 612–619 (2010)Google Scholar
  10. 10.
    Kamthe, A., Jiang, L., Cerpa, A.: Scopes: Smart cameras object position estimation system. Tech. rep., Computer Science and Engineering, School of Engineering, University of California, Merced; Merced, CA 95344 (2007)Google Scholar
  11. 11.
    Lo, B., Velastin, S.: Automatic congestion detection system for underground platforms. In: Proceedings of the International Symposium on Intelligent Multimedia, Video and Speech Processing, pp. 158–161 (2001)Google Scholar
  12. 12.
    McFarlane, N.J.B., Schofield, C.P.: Segmentation and tracking of piglets in images. J. Mach. Vision Appl. 8(3), 187–193 (1995)CrossRefGoogle Scholar
  13. 13.
    Microchip. PIC32MX3XX/4XX Family Data Sheet. http://www.microchip.com/downloads/en/DeviceDoc/61143E.pdf (2008)
  14. 14.
    Mosabbeb, E., Sadeghi, M., Fathy, M., Bahekmat, M.: A low-cost strong shadow-based segmentation approach for vehicle tracking in congested traffic scenes. In: Proceedings of International Conference on Machine Vision, pp. 147–152 (2007)Google Scholar
  15. 15.
    Piccardi, M.: Background subtraction techniques: a review. Proc. IEEE Int Conf. Syst. Man Cybern. 4, 3099–3104 (2004)Google Scholar
  16. 16.
    Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algorithms: a systematic survey. IEEE Trans. Image Process. 14, 294–307 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rahimi, M., Baer, R., Iroezi, O.I., Garcia, J.C., Warrior, J., Estrin, D., Srivastava, M.: Cyclops: in situ image sensing and interpretation in wireless sensor networks. In: Proceedings of the ACM Conference on Embedded Networked Sensor Systems, pp. 192–204 (2005)Google Scholar
  18. 18.
    Salvadori, C., Nastasi, C.: Cmos camera application note. http://erika.tuxfamily.org/applicationnotes/34-flex-and-dspic/73-hv7131gp.html (2009)
  19. 19.
    Salvadori, C., Makris, D., Petracca, M., del Rincón, J.M., Velastin, S.A.: Gaussian mixture background modelling optimisation for micro-controllers. In: ISVC (1) Lecture Notes in Computer Science vol. 7431, pp. 241–251 (2012)Google Scholar
  20. 20.
    Shen, Y., Hu, W., Liu, J., Yang, M., Wei, B., Chou, C.: Efficient background subtraction for real-time tracking in embedded camera networks. In: Proceedings of the ACM conference on Embedded Network Sensor Systems, pp. 295–308 (2012)Google Scholar
  21. 21.
    Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol 2, (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Claudio Salvadori
    • 1
  • Matteo Petracca
    • 2
  • Stefano Bocchino
    • 1
  • Riccardo Pelliccia
    • 1
  • Paolo Pagano
    • 2
  1. 1.TeCIP InstituteScuola Superiore Sant’AnnaPisaItaly 
  2. 2.National Inter-University Consortium for TelecommunicationsPisaItaly

Personalised recommendations