Advertisement

Journal of Real-Time Image Processing

, Volume 12, Issue 1, pp 55–69 | Cite as

Accelerated catadioptric omnidirectional view image unwrapping processing using GPU parallelisation

  • Nguan Soon Chong
  • M. L. Dennis Wong
  • Yau Hee Kho
Original Research Paper
  • 267 Downloads

Abstract

Catadioptric omnidirectional view sensors have found increasing adoption in various robotic and surveillance applications due to their 360° field of view. However, the inherent distortion caused by the sensors prevents their direct utilisations using existing image processing techniques developed for perspective images. Therefore, a correction processing known as “unwrapping” is commonly performed. However, the unwrapping process incurs additional computational loads on central processing units. In this paper, a method to reduce this burden in the computation is investigated by exploiting the parallelism of graphical processing units (GPUs) based on the Compute Unified Device Architecture (CUDA). More specifically, we first introduce a general approach of parallelisation to the said process. Then, a series of adaptations to the CUDA platform is proposed to enable an optimised usage of the hardware platform. Finally, the performances of the unwrapping function were evaluated on a high-end and low-end GPU to demonstrate the effectiveness of the parallelisation approach.

Keywords

Omnidirectional sensor Image unwrapping GPU Parallelisation CUDA Bilinear interpolation 

Notes

Acknowledgments

Nguan Soon Chong thanks Swinburne University of Technology (Sarawak Campus) for his Ph.D. studentship. The authors would like to personally thank Jian Soon Ng and Albin Sui Hian Kuek for their useful discussion on this research topic.

References

  1. 1.
    Baker, S., Nayar, S.K.: A theory of single-viewpoint catadioptric image formation. Int. J. Comput. Vis. 35(2), 175–196 (1999)CrossRefGoogle Scholar
  2. 2.
    Bui, P., Brockman, J.: Performance analysis of accelerated image registration using gpgpu. In: Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units, ACM, New York, GPGPU-2, pp. 38–45 (2009). doi: 10.1145/1513895.1513900
  3. 3.
    Burden, R.L., Faires, D.J.: Numerical Analysis, 7th edn. Brooks Cole, Belmont (2000)zbMATHGoogle Scholar
  4. 4.
    Chen, L.D., Zhang, M.J., Xiong, Z.H.: Series-parallel pipeline architecture for high-resolution catadioptric panoramic unwrapping. IET Image Process. 4(5):403–412 (2010). doi: 10.1049/iet-ipr.2009.0286 CrossRefGoogle Scholar
  5. 5.
    Chong, N.S., Kho, Y.H., Wong, M.L.D.: A closed form unwrapping method for a spherical omnidirectional view sensor. EURASIP J. Image Video Process. 2013, 5 (2013). doi: 10.1186/1687-5281-2013-5, url:http://jivp.eurasipjournals.com/content/2013/1/5
  6. 6.
    Chong, N.S., Kho, Y.H., Wong, M.L.D.: Custom aspect ratio correction for unwrapped omnidirectional view images. Comput. Electr. Eng. (2013, in press). doi: 10.1016/j.compeleceng.2013.04.005, url:http://dx.doi.org/10.1016/j.compeleceng.2013.04.005
  7. 7.
    Gaspar, J., Santos-Victor, J.: Visual path following with a catadioptric panoramic camera. In: Proceedings of the International Symposium on Intelligent Robotic Systems—SIRS’99, Coimbra (1999). url:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.3379
  8. 8.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hicks, R.A., Bajcsy, R.: Reflective surfaces as computational sensors. Image Vis. Comput. 19(11), 773–777 (2001). url:http://linkinghub.elsevier.com/retrieve/pii/S0262885600001049
  10. 10.
    Intel Corporation: Intel threading building blocks. Version 4.0 (2012)Google Scholar
  11. 11.
    Jeng, S.W., Tsai, W.H.: Using pano-mapping tables for unwarping of omni-images into panoramic and perspective-view images. Image Process. IET 1(2), 149–155 (2007). doi: 10.1049/iet-ipr:20060201 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lei, J., Du, X., Zhu, Y.F., Liu, J.L.: Unwrapping and stereo rectification for omnidirectional images. J. Zhejiang Univ. Sci. A 10(8), 1125–1139 (2009). url:http://www.springerlink.com/index/10.1631/jzus.A0820357 CrossRefzbMATHGoogle Scholar
  13. 13.
    Li, J., Lu, Y., Pu, B., Xie, Y., Qin, J., Pang, W.M., Heng, P.A.: Accelerating active shape model using gpu for facial extraction in video. In: Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2009), vol. 4, pp. 522–526 (2009). doi: 10.1109/ICICISYS.2009.5357636
  14. 14.
    Nayar, S.K.: Catadioptric omnidirectional camera. In: Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 482–488 (1997). doi: 10.1109/CVPR.1997.609369
  15. 15.
    NVIDIA Corporation: CUDA GPU occupancy calculator. Version 3.0 (2012a)Google Scholar
  16. 16.
    NVIDIA Corporation: NVIDIA CUDA C Programming Guide. NVIDIA Corporation, Santa Clara (2012b)Google Scholar
  17. 17.
    NVIDIA Corporation: NVIDIA visual profiler. Version 4.2 (2012c)Google Scholar
  18. 18.
    Rossi, R., Savatier, X., Ertaud, J.Y., Mazari, B.: Real-time 3d reconstruction for mobile robot using catadioptric cameras. In: Proceedings of the IEEE International Workshop on Robotic and Sensors Environments (ROSE 2009), pp. 104–109 (2009). doi: 10.1109/ROSE.2009.5355981
  19. 19.
    Scaramuzza, D., Martinelli, A., Siegwart, R.: A toolbox for easily calibrating omnidirectional cameras. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, pp. 5695–5701 (2006). doi: 10.1109/IROS.2006.282372
  20. 20.
    Scherl, H., Keck, B., Kowarschik, M., Hornegger, J.: Fast gpu-based ct reconstruction using the common unified device architecture (cuda). In: Proceedings of the IEEE Nuclear Science Symposium Conference Record (NSS ’07), vol. 6, pp. 4464–4466 (2007). doi: 10.1109/NSSMIC.2007.4437102
  21. 21.
    Zhang, H., Xie, Y., Heng, P.A.: Accelerating feature extraction for patch-based multi-view stereo algorithm. In: Proceedings of the International Conference on Computer Design and Applications (ICCDA), vol. 5, pp. 511–515 (2010). doi: 10.1109/ICCDA.2010.5541068
  22. 22.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000). doi: 10.1109/34.888718 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nguan Soon Chong
    • 1
  • M. L. Dennis Wong
    • 1
  • Yau Hee Kho
    • 2
  1. 1.Faculty of Engineering, Computing and ScienceSwinburne University of Technology (Sarawak Campus)KuchingMalaysia
  2. 2.School of EngineeringNazarbayev UniversityAstanaKazakhstan

Personalised recommendations