Skip to main content
Log in

A robust fuzzy-bilateral filtering method and its application to video deinterlacing

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Deinterlacing converts an interlaced field to progressive frames while sustaining and improving image details. This is one of the key operations of image processing. However, filter-based interpolation and detail enhancement are contradictory operations. Therefore, it is hard to implement two such operations simultaneously. In this paper, we propose a robust fuzzy-bilateral filtering method and its application to video deinterlacing. The proposed bilateral filtering concept considers the range and domain filters based on a fuzzy metric. This characteristic is adaptively applied to both existing pixel activity and the associated position between existing neighbor pixels and the missing pixels. Simulation results prove that the proposed method can efficiently interpolate the interlaced field while enhancing detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. All compared methods were re-implemented by the authors. Thus, the performances and computational times of other algorithms can be slightly different from their original articles.

References

  1. Ballard, R.C.: Cathode ray tude circuits.U.S. Patent 2 173 221, 22 July 1936.

  2. Jeon, G., Anisetti, M., Kim, D., Bellandi, V., Damiani, E., Jeong, J.: Fuzzy rough sets hybrid scheme for motion and scene complexity adaptive deinterlacing. Image Vis. Comput. 27(4), 425–436 (2009)

    Article  Google Scholar 

  3. Jeon, G., Anisetti, M., Bellandi, V., Damiani, E., Jeong, J.: Designing of a type-2 fuzzy logic filter for improving edge-preserving restoration of interlaced-to-progressive conversion. Inf. Sci. 179(13), 2194–2207 (2009)

    Article  Google Scholar 

  4. Jeon, G., Anisetti, M., Lee, J., Bellandi, V., Damiani, E., Jeong, J.: Concept of linguistic variable-based fuzzy ensemble approach: application to interlaced HDTV sequences. IEEE Trans. Fuzzy Syst. 17(6), 1245–1258 (2009)

    Article  Google Scholar 

  5. Trocan, M., Mikovicova, B., Zhanguzin, D.: An adaptive motion-compensated approach for video deinterlacing. Multimed. Tools Appl. 61(3), 819–837 (2012)

    Article  Google Scholar 

  6. Chen, T., Wu, H.R., Yu, Z.H.: Efficient deinterlacing algorithm using edge-based line average interpolation. Opt. Eng. 39(8), 2101–2105 (2000)

    Article  Google Scholar 

  7. Park, M.K., Kang, M.G., Nam, K, Oh, S.G.: New edge dependent deinterlacing algorithm based on horizontal edge pattern. IEEE Trans. Cons. Elect. 49(4), 1508–1512 (2003)

    Article  Google Scholar 

  8. Kim, W., Jin, S., Jeong, J.: Novel intra deinterlacing algorithm using content adaptive interpolation. IEEE Trans. Cons. Elect. 53(3), 1036–1043 (2007)

    Article  Google Scholar 

  9. Lee, D.-H., A new edge-based intra-field interpolation method for deinterlacing using locally adaptive-thresholded binary image. IEEE Trans. Cons. Elect. 54(1), 110–115 (2008)

    Article  Google Scholar 

  10. Chen, P.Y., Lai, Y.H.: A low-complexity interpolation method for deinterlacing. IEICE Trans. Inf. Syst. E90-D(2), 606–608 (2007)

    Article  MathSciNet  Google Scholar 

  11. Kang, K., Jeon, G., Jeong, J.: A single field interlaced to progressive format conversion using edge map in the image block. In: Proceedings IASTED SIP2009, pp. 132–137. Innsbruck, Austria (2009)

  12. Yang, S., Kim, D., Jeong, J.: Fine edge-preserving deinterlacing algorithm for progressive display. IEEE Trans. Cons. Elect. 55(3), 1654–1662 (2009)

    Article  Google Scholar 

  13. Park, S.J., Jeon, G., Jeong, J.: Covariance-based adaptive deinterlacing method using edge map. In: Proceedings IEEE IPTA2010, pp. 166–171. Paris, France, (2010)

  14. Park, S.J., Jeong, J.: Local surface model-based deinterlacing algorithm. Opt. Eng. 50(1), 017004 (2011)

    Article  MathSciNet  Google Scholar 

  15. Deame, J.: Motion compensated deinterlacing: the key to the digital video transition. In: Proceedings SMPTE 141st Technical Conference, pp. 1–6, 19–22 Nov 1999

  16. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings IEEE international conference on computer vision, pp. 836–846 (1998)

  17. Smith, S.M., Brady, J.M.: Susan-a new approach to lowlevel image processing. Int. J. Comput. Vis. 23, 45–78 (1997)

    Article  Google Scholar 

  18. Morillas, S., Gregori, V., Sapena, A.: Fuzzy bilateral filtering for color images. Lecture Notes Comput. Sci. 4141, 138–145 (2006)

    Article  Google Scholar 

  19. Shen, J., Sun, H., Zhao, H., Jin, X.: Bilateral filtering using fuzzy-median for image manipulations. In: Proceedings CAD/Graphics, pp. 158–161 (2009)

  20. Wang, A., Jeong, J.: Adaptive bilateral filter with local intensity histogram combine generalized fuzzy operation (GFO) for intra-frame deinterlacing. In: Proceedings systems and informatics (ICSAI), pp. 2148–2152 (2012)

  21. Zhang, B., Allebach, J.P.: Adaptive bilateral filter for sharpness enhancement and noise removal. IEEE Trans. Image Process. 17(5), 664–678 (2008)

    Article  MathSciNet  Google Scholar 

  22. Barner, K. E.: Fuzzy methods in nonlinear signal processing: part I-theory. In: Nonlinear signal and image processing: theory, methods, and applications. CRC Press, Boca Raton (2004)

  23. George, A., Romaguera, S.: Characterizing completable fuzzy metric spaces. Fuzzy Sets Syst. 144(3), 411–420 (2004)

    Article  Google Scholar 

  24. Available: http://www.cipr.rpi.edu/resource/stills/index.html. Accessed 27 Mar 2013

  25. Available: http://media.xiph.org/video/derf/. Accessed 27 Mar 2013

  26. NVIDIA. http://www.nvidia.com/cuda. Accessed 27 Mar 2013

  27. NVIDIA Corporation, NVIDIA CUDA Programming Guide, (2007). Accessed 27 Mar 2013

  28. Sanders, J.; Kandrot, E.: CUDA by Example, Addison-Wesley, Reading (2010)

Download references

Acknowledgments

This work was supported by the Incheon National University Research Grant in 2012.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gwanggil Jeon or Jong-Kyu Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, G., Kang, S. & Lee, JK. A robust fuzzy-bilateral filtering method and its application to video deinterlacing. J Real-Time Image Proc 11, 223–233 (2016). https://doi.org/10.1007/s11554-013-0336-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-013-0336-3

Keywords

Navigation