Journal of Real-Time Image Processing

, Volume 9, Issue 1, pp 127–140 | Cite as

VLSI implementation of star detection and centroid calculation algorithms for star tracking applications

  • Mohsen Azizabadi
  • Alireza BehradEmail author
  • M. B. Ghaznavi-Ghoushchi
Special Issue


Nowadays, hardware implementation of image and video processing algorithms on application specific integrated circuit (ASIC) has become a viable target in many applications. Star tracking algorithm is commonly used in space missions to recover the attitude of the satellite or spaceship. The algorithm matches stars of the satellite camera with the stars in a catalog to calculate the camera orientation (attitude). The number of stars in the catalog has the major impact on the accuracy of the star tracking algorithm. However, the higher number of stars in the catalog increases the computation burden and decreases the update rate of the algorithm. Hardware implementation of the star tracking algorithm using parallel and pipelined architecture is a proper solution to ensure higher accuracy as well as higher update rate. Noise filtering and also the detection of stars and their centroids in the camera image are the main stages in most of the star tracking algorithms. In this paper, we propose a new hardware architecture for star detection and centroid calculation in star tracking applications. The method contains several stages, including noise smoothing with fast Gaussian and median filters, connected component labeling, and centroid calculation. We introduce a new and fast algorithm for star labeling and centroid calculation that needs only one scan of the input image.


Star detection and labeling Centroid calculation Star tracking Application specific integrated circuit (ASIC) Hardware implementation 


  1. 1.
    Accardo, D., Rufino, G.: Brightness-independent start-up routine for star trackers. IEEE Trans Aerosp Electron Syst 38(3), 813–823 (2002)CrossRefGoogle Scholar
  2. 2.
    Lamy, Au, Rousseau, G., Bostel, J., Mazari, B.: Star recognition algorithm for APS star tracker: oriented triangles. IEEE Aerosp Electron Syst Mag 20(2), 27–31 (2005)CrossRefGoogle Scholar
  3. 3.
    Steyn, W., Jacobs, M., Oosthuizen, P.: A high performance star sensor system for full attitude determination on a microsatellite. In: Workshop on Control of Small Spacecraft at the 1997 Annual AAS Guidance and Control Conference, Breckenridge, CO, USA (1997)Google Scholar
  4. 4.
    Kolomenkin, M., Pollak, S., Shimshoni, I., Lindenbaum, M.: Geometric voting algorithm for star trackers. IEEE Trans Aerosp Electron Syst 44(2), 441–456 (2008)CrossRefGoogle Scholar
  5. 5.
    Clouse, D.S., Padgett, C.W.: Small field-of-view star identification using bayesian decision theory. IEEE Trans Aerosp Electron Syst 36(3), 773–783 (2000)CrossRefGoogle Scholar
  6. 6.
    Lee, H., Oh, C.S., Bang, H.: Modified grid algorithm for star pattern identification by using star trackers. In: IEEE International Conference on Recent Advances in Space Technologies (RAST ‘03), Daejon, South Korea, pp. 385–391. (2003)Google Scholar
  7. 7.
    Juang, J.N., Kim, H.Y., Junkins, J.L.: An efficient and robust singular value method for star pattern recognition and attitude determination. J Astronaut Sci 52(1), 211–220 (2004)Google Scholar
  8. 8.
    Kim, H.Y., Junkins, J.L.: Self-organizing guide star selection algorithm for star trackers: thinning method. In: IEEE Aerospace Conference Proceedings, TX, USA, pp. 2275–2283 (2002)Google Scholar
  9. 9.
    Zhang, C., Chen, C., Shen, X.: A new guide star selection algorithm for star tracker. In: World, Fifth (ed.) Congress on Intelligent Control and Automation (WCICA 2004), pp. 5445–5449. China, Wuhan (2004)Google Scholar
  10. 10.
    Mahalingam, V., Bhattacharya, K., Ranganathan, N., Chakravarthula, H., Murphy, R.R., Pratt, K.S.: A VLSI architecture and algorithm for Lucas–Kanade-Based optical flow computation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18(1), 29–38 (2010)Google Scholar
  11. 11.
    Wahid, K., Martuza, M., Das, M., McCrosky, C.: Efficient hardware implementation of 8 × 8 integer cosine transforms for multiple video codecs. J. Real-Time Image Process, 1–8 (2011). doi: 10.1007/s11554-011-0209-6
  12. 12.
    Hopkinson, G., Dale, C., Marshall, P.: Proton effects in charge-coupled devices. IEEE Trans Nucl Sci 43(2), 614–627 (1996)CrossRefGoogle Scholar
  13. 13.
    Maheshwari, R., Rao, S.S.S.P., Poonacha, P.G.: FPGA implementation of median filter. In: IEEE Tenth International Conference on VLSI Design, Hyderabad, India, 4–7 Jan 1997, pp. 523–524 (1997)Google Scholar
  14. 14.
    Hu, Y., Ji, H.: Research on image median filtering algorithm and its FPGA implementation. In: IEEE WRI Global Congress on Intelligent Systems (GCIS ‘09) Shanghai, China 2009, pp. 226–230Google Scholar
  15. 15.
    Vega-Rodríguez, M.A., Sánchez-Pérez, J.M., Gómez-Pulido, J.A.: An FPGA-based implementation for median filter meeting the real-time requirements of automated visual inspection systems. In: Proceedings of the 10th Mediterranean Conference on Control and Automation, Lisbon, Portugal, Citeseer (2002)Google Scholar
  16. 16.
    He, L., Chao, Y., Suzuki, K., Wu, K.: Fast connected-component labeling. Pattern Recogn 42(9), 1977–1987 (2009)CrossRefzbMATHGoogle Scholar
  17. 17.
    AbuBaker, A., Qahwaji, R., Ipson, S., Saleh, M.: One scan connected component labeling technique. In: IEEE International Conference on Signal Processing and Communications (ICSPC 2007), Dubai, pp. 1283–1286 (2007)Google Scholar
  18. 18.
    Flatt, H., Blume, S., Hesselbarth, S., Schunemann, T., Pirsch, P.: A parallel hardware architecture for connected component labeling based on fast label merging. In: IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP 2008) Hannover, Appelstr, pp. 144–149 (2008)Google Scholar
  19. 19.
    Ito, Y., Nakano, K.: Optimized component labeling algorithm for using in medium sized FPGAs. In: Ninth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT 2008), Higashi-Hiroshima, pp. 171–176 (2008)Google Scholar
  20. 20.
    Jiang, J., Zhang, G., Wei, X., Li, X.: Rapid star tracking algorithm for star sensor. IEEE Aerosp Electron Syst Mag 24(9), 23–33 (2009)CrossRefGoogle Scholar
  21. 21.
    Cohen, H.A.: Parallel algorithm for gray-scale image segmentation. In: IEEE Australian and New Zealand Conference on Ligent Information Systems, Adelaide, SA, 18–20 November 1996, pp. 143–146 (1996)Google Scholar
  22. 22.
    Hao, X., Jiang, J., Zhang, G.: Star sensor image acquisition and preprocessing hardware system based on CMOS image sensor and FGPA. Proc. SPIE 5253, 207–210 (2003)CrossRefGoogle Scholar
  23. 23.
    Obermann, S.F., Flynn, M.J.: Division algorithms and implementations. IEEE Trans Comput 46(8), 833–854 (1997)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Sorokin, N.: Implementation of high-speed fixed-point dividers on FPGA. J Comput Sci Technol 6(1), 8–11 (2006)Google Scholar
  25. 25.
    Khorbotly, S., Hassan, F.: A modified approximation of 2D Gaussian smoothing filters for fixed-point platforms. In: IEEE 43rd Southeastern Symposium on System Theory (SSST), Auburn, USA, March 14-17, pp. 151–159 (2011)Google Scholar
  26. 26.
    Laher, R., Catanzarite, J., Conrow, T., Correll, T., Chen, R., Everett, D., Shupe, D., Lonsdale, C., Hacking, P., Gautier, N., Lebsock, K.: Attitude control system and star-tracker performance of the Wide-field Infrared Explorer spacecraft. In: Paper AAS 00-146, Proceedings of the 2000 AAS/AIAA Spaceflight Mechanics Meeting Clearwater, FL, January 23–26 (2000)Google Scholar
  27. 27.
    Liebe, C.C.: Accuracy performance of star trackers-a tutorial. IEEE Trans Aerosp Electron Syst 38(2), 587–599 (2002)CrossRefGoogle Scholar
  28. 28.
    Gokhale, M., Graham, P.S.: Reconfigurable computing: accelerating computation with field-programmable gate arrays, p. 93. Springer, Berlin (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mohsen Azizabadi
    • 1
  • Alireza Behrad
    • 1
    Email author
  • M. B. Ghaznavi-Ghoushchi
    • 1
  1. 1.Faculty of EngineeringShahed UniversityTehranIran

Personalised recommendations