Journal of Real-Time Image Processing

, Volume 8, Issue 4, pp 379–388 | Cite as

500-fps face tracking system

  • Idaku Ishii
  • Tomoki Ichida
  • Qingyi Gu
  • Takeshi Takaki
Original Research Paper

Abstract

In this paper, we propose a high-speed vision system that can be applied to real-time face tracking at 500 fps using GPU acceleration of a boosting-based face tracking algorithm. By assuming a small image displacement between frames, which is a property of high-frame rate vision, we develop an improved boosting-based face tracking algorithm for fast face tracking by enhancing the Viola–Jones face detector. In the improved algorithm, face detection can be efficiently accelerated by reducing the number of window searches for Haar-like features, and the tracked face pattern can be localized pixel-wise even when the window is sparsely scanned for a larger face pattern by introducing skin color extraction in the boosting-based face detector. The improved boosting-based face tracking algorithm is implemented on a GPU-based high-speed vision platform, and face tracking can be executed in real time at 500 fps for an 8-bit color image of 512 × 512 pixels. In order to verify the effectiveness of the developed face tracking system, we install it on a two-axis mechanical active vision system and perform several experiments for tracking face patterns.

References

  1. 1.
    Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 34–58 (2002)CrossRefGoogle Scholar
  2. 2.
    Yang, G., Huang, T.S.: Human face detection in complex background. Pattern Recogn. 27(1), 53–63 (1994)CrossRefGoogle Scholar
  3. 3.
    Yow, K.C., Cipolla, R.: Feature-based human face detection. Image Vis. Comput. 15(9), 713–735 (1997)CrossRefGoogle Scholar
  4. 4.
    Gong, S., McKenna, S., Raja, Y.: Modelling facial colour and identity with Gaussian mixtures. Pattern Recogn. 31(12), 1883–1892 (1998)CrossRefGoogle Scholar
  5. 5.
    Craw, I., Tock, D., Bennett, A.: Finding face features. In: Proceedings of Second European Conference on Computer VisionGoogle Scholar
  6. 6.
    Lanitis, A., Taylor, C.J., Cootes, T.F.: An automatic face identification system using flexible appearance models. Image Vis. Comput. 13(5), 393–401 (1995)CrossRefGoogle Scholar
  7. 7.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)CrossRefGoogle Scholar
  8. 8.
    Sung, K.-K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 39–51 (1998)CrossRefGoogle Scholar
  9. 9.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 511–518 (2001)Google Scholar
  10. 10.
    Wei, Y., Bing, X., Chareonsak, C.: FPGA implementation of AdaBoost algorithm for detection of face biometrics. In: Proceedings of IEEE International Workshop on Biomedical Circuits and Systems S1/6–17–20 (2004)Google Scholar
  11. 11.
    Gao, C., Lu, S.-L.: Novel FPGA based Haar classifier face detection algorithma acceleration. In: Proceedings of International Conference Field Programmable Logic and Applications, pp 373–378 (2008)Google Scholar
  12. 12.
    Cho, J., Benson, B., Mirzaei, S., Kastner, R.: Parallelized architecture of multiple classifiers for face detection. In: Proceedings of IEEE International Conference on Application-specific Systems, Architectures and Processors, pp 75–82 (2009)Google Scholar
  13. 13.
    Hefenbrock, D., Oberg, J., Thanh, N.T.N., Kastner, R., Baden, S.B.: Accelerating Viola-Jones face detection to FPGA-level using GPUs. In: Proceedings of Annual International Symposium on Field-Programmable Custom Computing Machines, pp 11–18 (2010)Google Scholar
  14. 14.
    Eklund, J.E., Svensson, C., Astrom, A.: VLSI implementation of a focal plane image processor—a realization of the near-sensor image processing concept. IEEE Trans. VLSI Syst. 4(3), 322–335 (1996)CrossRefGoogle Scholar
  15. 15.
    Komuro, T., Kagami, S., Ishikawa, M.: A dynamically reconfigurable SIMD processor for a vision chip. IEEE J. Solid-State Circuits 39(1), 265–268 (2004)CrossRefGoogle Scholar
  16. 16.
    Ishii, I., Yamamoto, K., Kubozono, M.: Higher order autocorrelation vision chip. IEEE Trans. Electron Devices 53(8), 1797–1804 (2006)CrossRefGoogle Scholar
  17. 17.
    Hirai, S., Zakoji, M., Masubuchi, A., Tsuboi, T.: Realtime FPGA-based vision system. J. Robotics Mech. 17(4), 401–409 (2005)Google Scholar
  18. 18.
    Watanabe, Y., Komuro, T., Ishikawa, M.: 955-fps real-time shape measurement of a moving/deforming object using high-speed vision for numerous-point analysis. In: Proceedings of IEEE International Conference on Robotics and Automation, pp 3192–3197 (2007)Google Scholar
  19. 19.
    Ishii, I., Taniguchi, T., Sukenobe, R., Yamamoto, K.: Development of high-speed and real-time vision platform, H3 vision. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 3671–3678 (2009)Google Scholar
  20. 20.
    Ishii, I., Tatebe, T., Gu, Q., Moriue, Y., Takaki, T., Tajima, K.: (2010) 2000 fps real-time vision system with high-frame-rate video recording. In: Proceedings of IEEE International Conference on Robotics and Automation, pp 1536–1541Google Scholar
  21. 21.
    Papageorgiou, C.P., Oren, M., Poggio, T.: (1998) A general framework for object detection. In: Proceedings of IEEE International Conference on Computer Vision, pp 555–562Google Scholar
  22. 22.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Ishii, I., Nakabo, Y., Ishikawa, M.: Target tracking algorithm for 1 ms visual feedback system using massively parallel processing. In: Proceedings of IEEE International Conference on Robotics and Automation, pp 2309–2314 (1996)Google Scholar
  24. 24.
    Namiki, A., Imai, Y., Ishikawa, M.: Development of a high-speed multifingered hand system and its application to catching. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2666–2671 (2003)Google Scholar
  25. 25.
    Senoo, T., Namiki, A., Ishikawa, M.: High-speed batting using a multi-jointed manipulator. In: Proceedings of IEEE International Conference on Robotics and Automation, pp 1191–1196 (2004)Google Scholar
  26. 26.
    Cho, J., Benson, B., Cheamanukul, S., Kastner, R.: Increased performance of FPGA-based color classification system. In: Proceedings of IEEE Annual International Symposium on Field-Programmable Custom Computing Machines, pp 29–32 (2010)Google Scholar
  27. 27.
    Ishii, I., Tatebe, T., Gu, Q., Takaki, T.: Color-histogram-based tracking at 2000 fps. J. Electron. Imaging 21(1):013010 (2012)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Idaku Ishii
    • 1
  • Tomoki Ichida
    • 1
  • Qingyi Gu
    • 1
  • Takeshi Takaki
    • 1
  1. 1.1-4-1 KagamiyamaHigashi-HiroshimaJapan

Personalised recommendations