Skip to main content
Log in

FPGA-based architecture for real time segmentation and denoising of HD video

  • Special Issue
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

The identification of moving objects is a basic step in computer vision. The identification begins with the segmentation and is followed by a denoising phase. This paper proposes the FPGA hardware implementation of segmentation and denoising unit. The segmentation is conducted using the Gaussian mixture model (GMM), a probabilistic method for the segmentation of the background. The denoising is conducted implementing the morphological operators of erosion, dilation, opening and closing. The proposed circuit is optimized to perform real time processing of HD video sequences (1,920 × 1,080 @ 20 fps) when implemented on FPGA devices. The circuit uses an optimized fixed width representation of the data and implements high performance arithmetic circuits. The circuit is implemented on Xilinx and Altera FPGA. Implemented on xc5vlx50 Virtex5 FPGA, it can process 24 fps of an HD video using 1,179 Slice LUTs and 291 Slice Registers; the dynamic power dissipation is 0.46 mW/MHz. Implemented on EP2S15F484C3 StratixII, it provides a maximum working frequency of 44.03 MHz employing 5038 Logic Elements and 7,957 flip flop with a dynamic power dissipation of 4.03 mW/MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gutchess, D., Trajković, M., Cohen-Solal, E., Lyons, D., Jain, A. K.: A background model initialization algorithm for video surveillance. In: Proceedings of the Eighth IEEE International Conference on Computer Vision, Vancouver BC, July 2001, vol.1, pp. 733–740

  2. Haritaoglu, I., Harwood, D., Davis, L. S.: A fast background scene modeling and maintenance for outdoor surveillance. In: Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, Spain, 2000, vol.4, pp. 179–183

  3. Haritaoglu, I., Harwood D., Davis, L.S.: W4: real-time surveillance of people and their activities. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 809–830 (2000)

    Article  Google Scholar 

  4. KaewTrakulPong, P., Bowden, R.: A real time adaptive visual surveillance system for tracking low-resolution color targets in dynamically changing scenes. Image Vis. Comput. 21(10), 913–929 (2003)

    Article  Google Scholar 

  5. Gloyer, B., Aghajan, H. K., Siu, K., Kailath, T.: Video-based freeway-monitoring system using recursive vehicle tracking. In: Proceedings of the SPIE Symposium on Electronic Imaging: Image and Video Processing, San Jose, CA, USA, 1995, pp. 173–180

  6. Vibha, L., et al.: Moving vehicle identification using background registration technique for traffic surveillance. In: Proceedings of the International Multi Conference of Engineers and Computer Scientists, Hong Kong, 2008, vol. 1, pp. 572–577

  7. Kastrinaki V., Zervakis M., Kalaitzakis K.: A survey of video processing techniques for traffic applications. Image Vis. Comput. 21(4), 359–381 (2003)

    Article  Google Scholar 

  8. Jieménez, H., Salas, J.: Temporal templates for detecting the trajectories of moving vehicles. Lecture Notes in Computer Science, vol. 5807, pp. 485–493 (2009)

  9. Porikli, F.: Achieving real-time object detection and tracking under extreme conditions. J. Real-Time Image Process. 1, 33–40 (2006)

    Article  Google Scholar 

  10. Jamil N., Sembok, T.M.T., Bakar, Z.A.: Noise removal and enhancement of binary images using morphological operations. Inf Technol 4, 1–6 (2008)

    Google Scholar 

  11. Chaohui, Z., Xiaohui, D., Shuoyu, X., Zheng, S., Min, L.: An improved moving object detection algorithm based on frame difference and edge detection. In: Proceedings of the Fourth International Conference on Image and Graphics, Chengdu, 2007, pp. 519–523

  12. Mingwu, R., Han, S.: A practical method for moving target detection under complex background. Comput. Eng. 33–34 (2005).

  13. Benxian, X., Cheng, L., Hao, C., Yanfeng, Y., Rongbao, C.: Moving object detection and recognition based on the frame difference algorithm and moment invariant features. In: 27th Chinese Control Conference, Kunming, 2008, pp. 578–581

  14. Chien, S.Y., Ma, S.Y., Chen, L.G.: Efficient moving object segmentation algorithm using background registration technique. IEEE Trans. Circuits Syst. Video Technol. 12(7), 577–586 (2002)

    Article  Google Scholar 

  15. Ridder, C., Munkelt, O., Kirchner, H.: Adaptive background estimation and foreground detection using Kalman filtering. In: Proceedings of the ICRAM, 1995, pp. 193–199

  16. Karmann, K.P., Brandt, A.: Moving object recognition using an adaptive background memory. In: Proceedings of Time-Varying Image Processing and Moving Object Recognition, Capellini Ed., 1990, vol.2.

  17. Toyama, J., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and practice of background maintenance. In: International Conference on Computer Vision, Kerkyra, Greece, 1999, pp. 255–261

  18. Jacques, J.C.S., Jung, C.R., Musse, S.R.: Background subtraction and shadow detection in grayscale video sequences. In: 18th Brazilian Symposium on Computer Graphics and Image Processing, Brazil, 2005, pp.189–196

  19. Wren C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)

    Article  Google Scholar 

  20. Stauffer, C., Grimson, W.: Adaptive background mixture models for realtime tracking. Proc. IEEE conf. Comput. Vis. Pattern Recogn. 2, 246–252 (1999)

    Google Scholar 

  21. Stauffer, C., Grimson, W.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747–757 (2000)

    Article  Google Scholar 

  22. OpenCV library on source forge. http://sourceforge.net/projects/opencvlibrary/

  23. Minghua, S., Bermak, A.: An efficient digital VLSI implementation of Gaussian mixture models-based classifier. In: IEEE Transaction on Very Large Scale Integration Systems, 2006, pp. 962–974

  24. Varcheie, P., Sills-Lavoie, M., Bilodeau, G.-A.: A multiscale region- based motion detection and background subtraction algorithm. Sensors 10, 1041–1061 (2010)

    Google Scholar 

  25. Lin, H.-H., Chuang, J.-H., Liu, T.-L.: Regularized background adaptation: a novel learning rate control scheme for Gaussian mixture modeling. IEEE Trans. Image Process. 20(3), 822–836 (2011)

    Article  MathSciNet  Google Scholar 

  26. Suhr, J.K., Jung, H.G., Li, G., Kim, J.: Mixture of Gaussians-based background subtraction for Bayer-pattern image sequences. IEEE Trans. Circuits Syst. Video Technol. 21(3), 365–370 (2011)

    Article  Google Scholar 

  27. Kristensen, F., Hedberg, H., Jiang, H., Nilsson, P., Öwall, V.: An embedded real-time surveillance system: implementation and evaluation. J. signal Process. Syst. 52(1), 75–94 (2008)

    Google Scholar 

  28. Jiang, H., Ardö, H., Öwall, V. Hardware accelerator design for video segmentation with multi-modal background modelling. In: Proc. ISCAS 2, 1142–1145 (2005)

    Google Scholar 

  29. Jiang H., Ardö H., Öwall V. A Hardware architecture for real-time video segmentation utilizing memory reduction techniques. IEEE Trans. Circuit Syst. Video Technol. 19, 226–236 (2009)

    Article  Google Scholar 

  30. Minghua, S., Bermak, A., Chandrasekaran, S., Amira, A.: An efficient FPGA implementation of Gaussian mixture models-based classifier using distributed arithmetic. In: IEEE International Conference on Electronics, Circuits and Systems, Nice, 2006, pp. 1276–1279

  31. Genovese, M., Napoli, E., Petra, N.: OpenCV compatible real time processor for background foreground identification. In International Conference on Microelectronics, Egypt, Cairo, 2010, pp. 467–470

  32. Kyrkou, C., Theocharides, T.: A flexible parallel hardware architecture for AdaBoost-based real-time object detection. In: IEEE Trans.Very Large Scale Integration (VLSI) System, Issue: 99, pp 1–14 (2010)

  33. Aguilar-Ponce R., et al.: Real-time VLSI architecture for detection of moving object using Wronskian determinant. In: IEEE-MWSCAS, Covington, KY, vol. 1, pp. 875–878 (2005)

    Google Scholar 

  34. Juvonen, M.P.T., Coutinho, J.G.F., Luk, W.: Hardware architectures for adaptive background modelling programmable logic. In: SPL, Mar De Plata, 2007, pp. 149–154

  35. Guo J.-M., Liu Y.-F., Hsia C.-H., Shih M.-H., Hsu C.-S.: Hierarchical method for foreground detection using codebook model. IEEE Trans. Circuits Syst. Video Technol. 21(6), 804–815 (2011)

    Article  Google Scholar 

  36. Barnich O., Van Droogenbroeck M. (2011) ViBe: A universal background subtraction algorithm for video sequences. IEEE Trans. Image Process. 20(6), 1709–1724

    Article  MathSciNet  Google Scholar 

  37. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press Inc., Orlando (1983)

    Google Scholar 

  38. Maragos, P.: A representation theory for morphological image and signal processing. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 586–599 (1989)

    Article  MATH  Google Scholar 

  39. Huang, C.T., Mitchell, O.R.: A Euclidean distance transform using grayscale morphology decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 16(4), 443–448 (1994)

    Article  Google Scholar 

  40. Zarandy, A., Stoffels, A., Roska, T., Chua, L.O.: Implementation of binary and grayscale mathematical morphology on the cnn universal machine. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 45(2), 163–168 (1998)

    Article  Google Scholar 

  41. Zaharescu, E., Zamfir, M., Vertan, C.: Color morphology-like operators based on color geometric shape characteristics. Int. Symp. Signals Circuits Syst. 1, 145–148 (2003)

    Google Scholar 

  42. Frejes, S., Vajda, F.: A data-driven algorithm and systolic architecture for image morphology. In: Proceedings of the IEEE International Conference on Image Processing, Austin, Texas, vol. 2, pp. 550–554 (1994)

  43. Malamas, E.N., Malamos, A.G., Varvarigou, T.A.: Fast implementation of binary morphological operations on hardware-efficient systolic architectures. J. VLSI Signal Process. 25:79–93 (2000)

    Article  Google Scholar 

  44. Velten, J., Kummert , A.: FPGA-based implementation of variable sized structuring elements for 2-D binary morphological operations. In: Proceeings of the 1st IEEE International Workshop on Electronic Design, Test and Application Jan 29–31 2002, pp. 309–312

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Genovese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genovese, M., Napoli, E. FPGA-based architecture for real time segmentation and denoising of HD video. J Real-Time Image Proc 8, 389–401 (2013). https://doi.org/10.1007/s11554-011-0238-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-011-0238-1

Keywords

Navigation