Advertisement

Journal of Real-Time Image Processing

, Volume 5, Issue 4, pp 231–244 | Cite as

Human posture recognition for intelligent vehicles

  • Juan P. WachsEmail author
  • Mathias Kölsch
  • Deborah Goshorn
Special Issue

Abstract

Pedestrian detection systems are finding their way into many modern “intelligent” vehicles. The body posture could reveal further insight about the pedestrian’s intent and her awareness of the oncoming car. This article details the algorithms and implementation of a library for real-time body posture recognition. It requires prior person detection and then calculates overall stance, torso orientation in four increments, and head location and orientation, all based on individual frames. A syntactic post-processing module takes temporal information into account and smoothes the results over time while correcting improbable configurations. We show accuracy and timing measurements for the library and its utilization in a training application.

Keywords

Articulated body posture recognition Pose detection Computer vision Gesture recognition Syntactical behavior classifiers Error correction 

Notes

Acknowledgments

This research was supported by a grant from the Office of Naval Research and it was performed while the first author held a National Research Council Research Associateship Award at the Naval Postgraduate School.

References

  1. 1.
    Riener, A., Ferscha, A., Matscheko, M.: Intelligent vehicle handling: steering and body postures while cornering. Lecture Notes in Computer Science. 21st International Conference on Architecture of Computing Systems (ARCS 2008), System Architecture and Adaptivity, vol. 4934, pp. 68–82 (2008)Google Scholar
  2. 2.
    Kisacanin, B.: Method of detecting vehicle-operator stat—US Patent App. 11/317,431 (2005)Google Scholar
  3. 3.
    Balser, B.B., Foxman, A.H.: Armed Assaults and Suicide Bombers. Anti-Defamation League 73 (2005)Google Scholar
  4. 4.
    Bertozzi, M., Broggi, A., Fascioli, A., Graf, T., Meinecke, M.M.: Pedestrian detection for driver assistance using multiresolution infrared vision. IEEE Trans. Vehicular Technol. 53, 0018–9545 (2004)CrossRefGoogle Scholar
  5. 5.
    Gerónimo, D., López, A.M., Sappa, A.D., Graf, T.: Survey on pedestrian detection for advanced driver assistance systems. IEEE Trans. Pattern Anal. Mach. Intell. (2009)Google Scholar
  6. 6.
    Hu, A.W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviours. IEEE Trans. Syst. Man Cybern. C 34(3), 334–352 (2004)CrossRefGoogle Scholar
  7. 7.
    Moeslund, T.B., Granum, E.: A survey of computer vision-based human motion capture. Comput. Vis. Image Underst. 81, 231–268 (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Agarwal, A., Triggs, B.: Recovering 3D Human Pose from Monocular Images. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 44–58 (2006)CrossRefGoogle Scholar
  9. 9.
    Cucchiara, R., Grana, C., Prati, A, Vezzani, R.: Probabilistic posture classification for human-behavior analysis. SMC-A(35), No. 1, pp. 42–54 (2005)Google Scholar
  10. 10.
    Cucchiara, R. Prati, A. Vezzani, R.: Posture classification in a multi-camera indoor environment. IEEE Intl Conf on Image Proc, ICIP 2005, I-725-8 (2005)Google Scholar
  11. 11.
    Juang, C.F., Chang, C.M.: Human body posture classification by a neural fuzzy network and home care system application. IEEE SMC-A (37), No. 6, pp. 984–994 (2007)Google Scholar
  12. 12.
    Hu, J.S. Su, T.M., Li, P.C.: 3-D Human posture recognition system using 2-D shape features. In: 2007 IEEE International Conference on Robotics and Automation, pp. 3933–3938 (2007)Google Scholar
  13. 13.
    Jiang, H., Li, Z.N., Drew, M.: Recognizing posture in pictures with successive convexification and linear programming. IEEE Multimedia (2007)Google Scholar
  14. 14.
    Bouchard, G. Triggs, B.: A hierarchical part-based model for visual object categorization. In CVPR (2005)Google Scholar
  15. 15.
    Fergus, R., Perona, P., Zisserman, A.: A sparse object category model for efficient learning and exhaustive recognition. In CVPR (2005)Google Scholar
  16. 16.
    Murphy, K., Torralba, A., Eaton, D., Freeman, W.T.: Object detection and localization using local and global features. Lecture Notes in Computer Science. Sicily Workshop on Object Recognition (2005)Google Scholar
  17. 17.
    Leibe, B., Seemann, Schiele B.: Pedestrian detection in crowded scenes. CVPR (1) 2005, (2005):878–885Google Scholar
  18. 18.
    Felzenszwalb, P. McAllester, D., Ramanan D.: A discriminatively trained, multiscale, deformable part model. Proceedings of the IEEE CVPR 2008, (2008)Google Scholar
  19. 19.
    Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing visual features for multiclass and multiview object detection. IEEE PAMI, 29:5, pp. 854–869 (2007)Google Scholar
  20. 20.
    Wachs, J.P. Goshorn, D, Kolsch, M.: Recognizing human postures and poses in monocular still images. In: Proceedings. of the IPCV 2009. Intl. Conference on Image Processing, Computer Vision & Pattern Recognition, vol 2, pp. 665–671 (2009)Google Scholar
  21. 21.
    BASE-IT: Behavior Analysis and Synthesis for Intelligent Training. On-line: http://www.movesinstitute.org/base-it/index.html
  22. 22.
    Goshorn, R., Goshorn D., Kölsch, M.:The enhancement of low = level classification for ambient assisted living, in Behavioral Monitoring and Interpretation Workshop at the German Conference on Artificial Intelligence, September (2008)Google Scholar
  23. 23.
    Murphy, K.: Dynamic Bayesian Networks: representation, inference, and learning. PhD Dissertation, Computer Science. University of California, Berkeley (2002)Google Scholar
  24. 24.
    Rabiner, L. Juang, B.: An introduction to hidden markov models. In: IEEE ASSP Mag. vol. 3, pp. 4–16, IEEE Signal Processing Society (1986)Google Scholar
  25. 25.
    Sadagic, A. Welch, G., Basu, C., Darken, C., Kumar R., Fuchs, H., Cheng, H., Frahm, J.M., Kölsch, M., Rowe, N., Towles, H., Wachs, J., Lastra, A.: New Generation of Instrumented Ranges: Enabling Automated Performance Analysis, I/ITSEC (2009)Google Scholar
  26. 26.
    Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)Google Scholar
  27. 27.
    Russell, B., Torralba, A., Murphy, K., Freeman, W. T.: LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77(1–3) (2008)Google Scholar
  28. 28.
    Tuzel O., Porikli F., Meer P.: Region covariance: a fast descriptor for detection and classification. In: Proceedings of 9th European Conference on Computer Vision, Graz, Austria, vol. 2, pp. 589–600 (2006)Google Scholar
  29. 29.
    Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on Riemannian manifolds. IEEE Trans. Pattern Anal. Machine Intell. 30, 1713–1727 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Juan P. Wachs
    • 1
    Email author
  • Mathias Kölsch
    • 2
  • Deborah Goshorn
    • 2
  1. 1.School of Industrial Engineering, Purdue UniversityWest LafayetteUSA
  2. 2.MOVES Institute, Naval Postgraduate SchoolMontereyUSA

Personalised recommendations