Advertisement

Journal of Real-Time Image Processing

, Volume 5, Issue 2, pp 73–90 | Cite as

An haptic-based immersive environment for shape analysis and modelling

  • Bruno R. de AraújoEmail author
  • Tiago Guerreiro
  • Manuel J. Fonseca
  • Joaquim A. Jorge
  • João M. Pereira
  • Monica Bordegoni
  • Francesco Ferrise
  • Mario Covarrubias
  • Michele Antolini
Special Issue

Abstract

Currently, the design of aesthetic products is a process that requires a set of activities where digital models and physical mockups play a key role. Typically, these are modified (and built) several times before reaching the desired design, increasing the development time and, consequently, the final product cost. In this paper, we present an innovative design environment for computer-aided design (CAD) surface analysis. Our system relies on a direct visuo-haptic display system, which enables users to visualize models using a stereoscopic view, and allows the evaluation of sectional curves using touch. Profile curves are rendered using an haptic device that deforms a plastic strip, thanks to a set of actuators, to reproduce the curvature of the shape co-located with the virtual model. By touching the strip, users are able to evaluate shape characteristics, such as curvature or discontinuities (rendered using sound), and to assess the surface quality. We believe that future computer-aided systems (CAS)/CAD systems based on our approach will contribute in improving the design process at industrial level. Moreover, these will allow companies to reduce the product development time by reducing the number of physical mockups necessary for the product design evaluation and by increasing the quality of the final product, allowing a wider exploration and comparative evaluation of alternatives in the given time.

Keywords

Haptic Immersive Tracking Stereo 

Notes

Acknowledgments

This work was supported in part by European Commission through Grant FP6-IST-5-034525 (SATIN). Bruno Araújo and Tiago Guerreiro were supported by the Portuguese Foundation for Science and Technology, Grant references SFRH/ BD/ 31020/ 2006 and SFRH/ BD/ 28110/ 2006.

References

  1. 1.
    Agrawala, M., Beers, A.C., McDowall, I., Fröhlich, B., Bolas, M., Hanrahan, P.: The two-user responsive workbench: support for collaboration through individual views of a shared space. In: SIGGRAPH ’97. Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp 327–332. ACM/Addison-Wesley Publishing, New York (1997)Google Scholar
  2. 2.
    Amicis, R.D., Conti, G., Fiorentino, M.: Tangible interfaces in virtual environments for industrial design. In: AVI ’04. Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 261–264. ACM, New York (2004)Google Scholar
  3. 3.
    Bae, S.H., Kobayash, T., Kijima, R., Kim, W.S.: Tangible nurbs-curve manipulation techniques using graspable handles on a large display. In: UIST ’04. Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology, pp. 81–90. ACM, New York (2004)Google Scholar
  4. 4.
    Balakrishnan, R., Fitzmaurice, G., Kurtenbach, G., Buxton, W.: Digital tape drawing. In: UIST ’99. Proceedings of the 12th Annual ACM Symposium on User Interface Software and Technology, pp. 161–169. ACM, New York (1999)Google Scholar
  5. 5.
    Balakrishnan, R., Fitzmaurice, G., Kurtenbach, G., Singh, K.: Exploring interactive curve and surface manipulation using a bend and twist sensitive input strip. In: I3D ’99. Proceedings of the 1999 Symposium on Interactive 3D Graphics, pp. 111–118. ACM, New York (1999)Google Scholar
  6. 6.
    Barsky, B.A., DeRose, T.D.: Geometric continuity of parametric curves. Three equivalent characterizations. IEEE Comput. Graph. Appl. 9(6), 60–68 (1989)CrossRefGoogle Scholar
  7. 7.
    Bimber, O., Encarnação, L.M., Schmalstieg, D.: Augmented reality with back-projection systems using transflective surfaces. Comput. Graph. Forum 19(3) (2000)Google Scholar
  8. 8.
    Brederson, J., Ikits, M., Johnson, C., Hansen, C., Hollerbach, J.: The visual haptic workbench. In: Proceedings of the Fifth PHANToM Users Group Workshop (2000)Google Scholar
  9. 9.
    Buxton, W., Fitzmaurice, G., Balakrishnan, R., Kurtenbach, G.: Large displays in automotive design. IEEE Comput. Grap. Appl. 20(4), 68–75 (2000)CrossRefGoogle Scholar
  10. 10.
    Cao, X., Balakrishnan, R.: Visionwand: interaction techniques for large displays using a passive wand tracked in 3d. In: UIST ’03. Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technology, pp. 173–182. ACM, New York (2003)Google Scholar
  11. 11.
    Chu, C.C.P., Dani, T.H., Gadh, R.: Evaluation of virtual reality interface for product shape designs. IIE Trans. 30 (1998)Google Scholar
  12. 12.
    cycling74 (2009) Max/msp. http://www.cycling74.com/
  13. 13.
    Fischer, A., Vance, J.M.: Phantom haptic device implemented in a projection screen virtual environment. In: EGVE ’03. Proceedings of the Workshop on Virtual Environments, pp. 225–229. ACM, New York (2003)Google Scholar
  14. 14.
    Fleisch, T., Rechel, F., Santos, P., Stork, A.: Constraint stroke-based oversketching for 3d curves. In: Eurographics Workshop on Sketch-Based Interfaces and Modeling, pp. 161–165 (2004)Google Scholar
  15. 15.
    Geiger, C., Rattay, O.: Tubemouse—a two-handed input device for flexible objects. 3D User Interfaces, IEEE Symposium, pp. 27–34 (2008)Google Scholar
  16. 16.
    Grossman, T., Balakrishnan, R., Kurtenbach, G., Fitzmaurice, G., Khan, A., Buxton, B.: Interaction techniques for 3d modeling on large displays. In: I3D ’01. Proceedings of the 2001 Symposium on Interactive 3D Graphics, pp. 17–23. ACM, New York (2001)Google Scholar
  17. 17.
    Grossman, T., Balakrishnan, R., Kurtenbach, G., Fitzmaurice, G., Khan, A., Buxton, B.: Creating principal 3d curves with digital tape drawing. In: CHI ’02. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 121–128. ACM, New York (2002)Google Scholar
  18. 18.
    Grossman, T., Balakrishnan, R., Singh, K.: An interface for creating and manipulating curves using a high degree-of-freedom curve input device. In: CHI ’03. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 185–192. ACM, New York (2003)Google Scholar
  19. 19.
    Hachet, M., Guitton, P.: The interaction table: a new input device designed for interaction in immersive large display environments. In: EGVE ’02. Proceedings of the Workshop on Virtual Environments, pp. 189–196. Eurographics Association, Aire-la-Ville (2002)Google Scholar
  20. 20.
    Hill, L., Chiu-Shui, C., Cruz-Neira, C.: Virtual architectural design tool (vadet). In: Proceedings of the 3rd International Immersive Projection Technology Workshop (1999)Google Scholar
  21. 21.
    Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: a sketching interface for 3d freeform design. In: Proceedings of SIGGRAPH 99, pp. 409–416, Los Angeles, ISBN 0-20148-560-5 (1999)Google Scholar
  22. 22.
    Infusion (2008) I-cubex. http://www.infusionsystems.com/
  23. 23.
    Ishii, H., Ratti, C., Piper, B., Wang, Y., Biderman, A., Ben-Joseph, E.: Bringing clay and sand into digital design—continuous tangible user interfaces. BT Tech. J. 22(4), 287–299 (2004)CrossRefGoogle Scholar
  24. 24.
    Johnson, A., Sandin, D., Dawe, G., Defanti, T., Pape, D., Qiu, Z., Thongrong, S., Plepys, D.: Developing the PARIS: using the cave to prototype a new vr display. In: CDROM Proceedings of IPT 2000: Immersive Projection Technology Workshop, Online (2000). http://www.evl.uic.edu/aej/papers/IPT.PARIS.pdf
  25. 25.
    Kuester, F., Duchaineau, M.A., Hamann, B., Joy, K.I., Ma, K.L.: The designers workbench: towards real-time immersive modeling. Soc. Photo Opt. Instrum. Eng Proc. Ser. 3957(VII), 464–472 (2000)Google Scholar
  26. 26.
    Levet, F., Granier, X., Schlick, C.: 3d Sketching with profile curves. In: International Symposium on Smart Graphics (2006). http://www.labri.fr/publications/is/2006/LGS06a
  27. 27.
    Llamas, I., Kim, B., Gargus, J., Rossignac, J., Shaw, C.D.: Twister: a space-warp operator for the two-handed editing of 3d shapes. ACM Trans. Graph 22(3):663–668 (2003). doi: 10.1145/882262.882323 CrossRefGoogle Scholar
  28. 28.
    Llamas, I., Powell, A., Rossignac, J., Shaw, C.D.: Bender: a virtual ribbon for deforming 3d shapes in biomedical and styling applications. In: SPM ’05. Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling, pp. 89–99. ACM, New York (2005)Google Scholar
  29. 29.
    Luciano, C., Banerjee, P., Florea, L., Dawe, G.: Design of the immersivetouch: a high-performance haptic augmented virtual reality system. In: Proceedings of 11th International Conference on Human–Computer Interaction, Las Vegas (2005)Google Scholar
  30. 30.
    Nealen, A., Sorkine, O., Alexa, M., Cohen-Or, D.: A sketch-based interface for detail-preserving mesh editing. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pp. 1142–1147. ACM, New York (2005)Google Scholar
  31. 31.
    OpenSG (2007) Opensg. http://www.opensg.org
  32. 32.
    Ortega, M., Coquillart, S.: Prop-based haptic interaction with co-location and immersion: an automotive application. In: IEEE International Workshop on Haptic Audio Visual Environments and their Applications, p 6 (2005)Google Scholar
  33. 33.
    Reitmayr, G., Schmalstieg, D.: An open software architecture for virtual reality interaction. In: VRST ’01. Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 47–54. ACM, New York (2001). doi: doi.acm.org/10.1145/505008.505018
  34. 34.
    Sheng, J., Balakrishnan, R., Singh, K.: An interface for virtual 3d sculpting via physical proxy. In: GRAPHITE ’06. Proceedings of the 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, pp. 213–220. ACM, New York (2006)Google Scholar
  35. 35.
    Shesh, A., Chen, B.: Smartpaper: an interactive and user friendly sketching system. Comput. Graph. Forum 23(3), 301–310 (2004)CrossRefGoogle Scholar
  36. 36.
    Singh, K.: Interactive curve design using digital French curves. In: I3D ’99. Proceedings of the 1999 Symposium on Interactive 3D Graphics, pp. 23–30. ACM, New York (1999)Google Scholar
  37. 37.
    Smith, R., Thomas, B., Piekarski, W.: Tech note: digital foam. 3D User Interfaces, IEEE Symposium, pp. 35–38 (2008)Google Scholar
  38. 38.
    Tarrin, N., Coquillart, S., Hasegawa, S., Bouguila, L., Sato, M.: The stringed haptic workbench: a new haptic workbench solution. Comput. Graph. Forum, pp. 583–590 (2003)Google Scholar
  39. 39.
    Think3 (2009) Thinkcore cad api. http://www.think3.com
  40. 40.
    Ullmer, B., Ishii, H.: The metadesk: models and prototypes for tangible user interfaces. In: UIST ’97. Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology, pp. 223–232. ACM, New York (1997)Google Scholar
  41. 41.
    Wesche, G., Seidel, H.P.: Freedrawer. A free-form sketching system on the responsive workbench. In: VRST ’01. Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 167–174. ACM, New York (2001)Google Scholar
  42. 42.
    Zeleznik, R.C., Herndon, K.P., Hughes, J.F.: SKETCH: an interface for sketching 3D scenes. In: SIGGRAPH 96 Conference Proceedings, pp. 163–170 (1996)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Bruno R. de Araújo
    • 1
    Email author
  • Tiago Guerreiro
    • 1
  • Manuel J. Fonseca
    • 1
  • Joaquim A. Jorge
    • 1
  • João M. Pereira
    • 1
  • Monica Bordegoni
    • 2
  • Francesco Ferrise
    • 2
  • Mario Covarrubias
    • 2
  • Michele Antolini
    • 2
  1. 1.Visualization and Intelligent Multimodal Interfaces, Department of Information Systems and Computer Science, INESC-ID, ISTTechnical University of LisbonLisbonPortugal
  2. 2.Dipartimento di Meccanica, Facolta’ di Disegno IndustrialePolitecnico di MilanoMilanItaly

Personalised recommendations