Journal of Real-Time Image Processing

, Volume 2, Issue 1, pp 3–9 | Cite as

Real-time 2D to 3D video conversion

  • Ianir Ideses
  • Leonid P. Yaroslavsky
  • Barak Fishbain
Original Research Paper

Abstract

We present a real-time implementation of 2D to 3D video conversion using compressed video. In our method, compressed 2D video is analyzed by extracting motion vectors. Using the motion vector maps, depth maps are built for each frame and the frames are segmented to provide object-wise depth ordering. These data are then used to synthesize stereo pairs. 3D video synthesized in this fashion can be viewed using any stereoscopic display. In our implementation, anaglyph projection was selected as the 3D visualization method, because it is mostly suited to standard displays.

Keywords

Real-time 3D Anaglyph Depth-maps MPEG 4 

References

  1. 1.
    Blundell, B., Schwarz, A.: Volumetric Three Dimensional Display Systems. Wiley, New York (2000)Google Scholar
  2. 2.
    Halle, M.: Autoestereoscopic displays and computer graphics. Comput. Graph. (ACM) 31, 58–62 (1997)CrossRefGoogle Scholar
  3. 3.
    Ideses, I., Yaroslavsky, L.: A method for generating 3D video from a single video stream. VMV 2002 435–438 (2002)Google Scholar
  4. 4.
    Ideses I., Yaroslavsky L.: 3 methods to improve quality of colour anaglyphs. J. Optics. A: Pure, Applied Optics 7(12), 755–762 (8) (2005)Google Scholar
  5. 5.
    Ideses, I., Yaroslavsky, L.: New methods to produce high quality color anaglyphs for 3-D visualization. In: Image Analysis and Recognition: International Conference ICIAR 2004, Lecture Notes in Computer Science. pp. 273–280. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of 7th International Joint Conference on Artificial Intelligence (IJCAI), pp. 674–679 (1981)Google Scholar
  7. 7.
    Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)CrossRefGoogle Scholar
  8. 8.
    Periaswamy, S. Farid, H: Elastic registration in the presence of intensity variations. IEEE. Trans. Med. Imaging. 22(7) (2003)Google Scholar
  9. 9.
    Wu, Y.T., Kanade, T., Li, C.C., Cohn, J.: Image registration using wavelet-based motion model. Int. J. Comput. Vis. (2000)Google Scholar
  10. 10.
    Alvarez, L., Deriche, R., Sanchez, J., Weickert, J.: Dense disparity map estimation respecting image discontinuities: a PDE and scalespace based approach. Technical Report RR-3874, INRIA (2000)Google Scholar
  11. 11.
    Schmidt, J., Niemann, H., Vogt, S.: Dense disparity maps in real-time with an application to augmented reality. In: IEEE Workshop on Applications of Computer Vision (WACV 2002), 3–4 December 2002. IEEE Computer Society, OrlandoGoogle Scholar
  12. 12.
    Ran, A., Sochen, N.A.: Differential Geometry Techniques in Stereo Vision Proceedings of EWCG, pp. 98–103 (2000)Google Scholar
  13. 13.
    Corke, P., Dunn, P.: Real-Time Stereopsis Using FPGAs, IEEE TENCON—Speech and Image Technologies for Computing and Telecommunications, pp. 235–238 (1997)Google Scholar
  14. 14.
    Faugeras, O. et al.: Real time correlation based stereo: algorithm, implementations and applications. INRIA Technical Report 2013 (1993)Google Scholar
  15. 15.
    Kimura, S., Kanade, T., Kano, H., Yoshida, A., Kawamura, E., Oda, K.: CMU video-rate stereo machine. Proceedings of Mobile Mapping Symposium (1995)Google Scholar
  16. 16.
    Konolige, K.: Small vision systems: hardware and implementation. In: Eighth International Symposium on Robotics Research, Hayama, Japan (1997)Google Scholar
  17. 17.
    Kimura, S., Shinbo, T., Yamaguchi, H., Kawamura, E., Naka, K.: A convolver-based real-time stereo machine (SAZAN). CVPR, pp. 457–463 (1999)Google Scholar
  18. 18.
    Matthies, L.: Stereo vision for planetary rovers: stochastic modeling to near realtime implementation. Int. J. Comput. Vis. 8, 71–91 (1992)CrossRefGoogle Scholar
  19. 19.
    Mulligan, J., Daniilidis, K.: Real-time trinocular stereo for tele-immersion. ICIP (2001)Google Scholar
  20. 20.
    Woodfill, J., Von Herzen, B.: Real-time stereo vision on the PARTS reconfigurable computer. In: Proceedings of IEEE Workshop FPGAs for Custom Computing Machines, pp. 242–250 (1997)Google Scholar
  21. 21.
    Ideses, I.P., Yaroslavsky, L.P., Vistuch, R., Fishbain, B.: 3D video from compressed 2D video. In: Proceedings of Stereoscopic Displays and Applications XVIII. SPIE and IS&T, San Jose, CA (2007)Google Scholar
  22. 22.
    Ohm, J.R.: Stereo/multiview video encoding using the MPEG family of standards. In: Merritt, O.J., Bolas, M.T., Fisher,S.S., (eds.) The Engineering Reality of Virtual Reality, vol. 3639, pp. 242–253. SPIE, San Jose (1999)Google Scholar
  23. 23.
    Wiegand, T., Sullivan, G.J., Bjøntegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE. Trans. Circ. Syst. Video Technol. 13(7), 560–576 (2003)Google Scholar
  24. 24.
    Yaroslavsky, L.P., Campos, J., Espínola, M., Ideses, I.: Redundancy of stereoscopic images: experimental evaluation. Opt. Express. 13, 10895–10907 (2005)CrossRefGoogle Scholar
  25. 25.
    Yaroslavsky, L.P.: On redundancy of stereoscopic pictures. In: Proceedings of Image Science ‘85, Helsinki, Finland, 11–14 June 1985, vol. 1, pp. 82–85. Acta Polytechnica Scandinavica, no. 149 (1985)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Ianir Ideses
    • 1
  • Leonid P. Yaroslavsky
    • 1
  • Barak Fishbain
    • 1
  1. 1.Department of Interdisciplinary StudiesTel Aviv UniversityTel AvivIsrael

Personalised recommendations