Skip to main content
Log in

FPGA-based real-time 3D image preprocessing for image-guided medical interventions

  • Priginal Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Minimally invasive image-guided interventions (IGIs) are time and cost efficient, minimize unintended damage to healthy tissue, and lead to faster patient recovery. One emerging trend in IGI workflow is to use volumetric imaging modalities such as low-dose computed tomography (CT) and 3D ultrasound to provide real-time, accurate anatomical information intraoperatively. These intraoperative images, however, are often characterized by quantum (in low-dose CT) or speckle (in ultrasound) noise and must be enhanced prior to any advanced image processing. Anisotropic diffusion filtering and median filtering have been shown to be effective in enhancing and improving the visual quality of these images. However, achieving real-time performance, as required by IGIs, using software-only implementations is challenging because of the sheer size of the images and the arithmetic complexity of the filtering operations. We present a field-programmable gate array-based reconfigurable architecture for real-time preprocessing of intraoperative 3D images. The proposed architecture provides programmable kernels for 3D anisotropic diffusion filtering and 3D median filtering within the same framework. The implementation of this architecture using an Altera Stratix-II device achieved a voxel processing rate close to 200 MHz, which enables the use of these processing techniques in the IGI workflow prior to advanced operations such as segmentation, registration, and visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Antoch, G., Debatin, J.F., Stattaus, J., Kuehl, H., Vogt, F.M.: Value of CT volume imaging for optimal placement of radiofrequency ablation probes in liver lesions. J. Vasc. Interv. Radiol. 13(11), 1155 (2002)

    Article  Google Scholar 

  2. Ataman, E., Alparslan, E.: Applications of median filtering algorithm to images. Electronics Division, Marmara Research Institute, Gebze, Turkey (1978)

    Google Scholar 

  3. Benkrid, K., Crookes, D., Benkrid, A.: Design and implementation of a novel algorithm for general purpose median filtering on FPGAs. In: Proceedings of the IEEE International Symposium on Circuits and Systems, ISCAS, vol. 4, pp. 425–428 (2002)

  4. Bruhn, A., Jakob, T., Fischer, M., et al.: Designing 3D nonlinear diffusion filters for high performance cluster computing. In: Proceedings of the 24th DAGM Symposium on Pattern Recognition, vol. 2449, pp. 290–297 (2002)

  5. Bruhn, A., Jakob, T., Fischer, M., et al.: High performance cluster computing with 3D nonlinear diffusion filters. Real Time Imaging 10(1), 41–51 (2004)

    Article  Google Scholar 

  6. Castro-Pareja, C.R., Dandekar, O.S., Shekhar, R.: FPGA-based real-time anisotropic diffusion filtering of 3D ultrasound images. Proc. Real Time Imaging IX SPIE 5671, 123 (2005)

    Google Scholar 

  7. Castro-Pareja, C.R., Jagadeesh, J.M., Shekhar, R.: FAIR: a hardware architecture for real-time 3D image registration. IEEE Trans. Inf. Technol. Biomed. 7(4), 426–434 (2003)

    Article  Google Scholar 

  8. Chakrabarti, C.: High sample rate array architectures for median filters. IEEE Trans. Signal Process. 42(3), 707–712 (1994)

    Article  Google Scholar 

  9. Chang, L.W., Lin, J.H.: A bit-level systolic array for median filter. IEEE Trans. Signal Process. 40(8), 2079–2083 (1992)

    Article  Google Scholar 

  10. Chen, K.: An integrated bit-serial 9-point median chip. In: Proceeding of the European Conference on Circuit Theory and Design, pp. 339–343 (1989)

  11. Doggett, M., Meissner, M.: A memory addressing and access design for real time volume rendering. In: IEEE International Symposium on Circuits and Systems, ISCAS, vol. 4, pp. 344–347 (1999)

  12. Dorati, A., Lamberti, C., Sarti, A., Baraldi, P., Pini, R.: Pre-processing for 3D echocardiography. Comput. Cardiol. 565–568 (1995)

  13. Dupuy, D.E., Goldberg, S.N.: Image-guided radiofrequency tumor ablation: challenges and opportunities—part II. J. Vasc. Interv. Radiol. 12(10), 1135–1148 (2001)

    Article  Google Scholar 

  14. Fitch, J.P., Coyle, E.J., Gallagher, N.C.J.: Median filtering by threshold decomposition. IEEE Trans. Acoust. 32(6), 1183–1188 (1984)

    Article  MATH  Google Scholar 

  15. Gallegos-Funes, F.J., Ponomaryov, V.I.: Real-time image filtering scheme based on robust estimators in presence of impulsive noise. Real Time Imaging 10(2), 69 (2004)

    Article  Google Scholar 

  16. Gerig, G., Kubler, O., Kikinis, R., Jolesz, F.A.: Nonlinear anisotropic filtering of MRI data. IEEE Trans. Med. Imaging 11(2), 221–232 (1992)

    Article  Google Scholar 

  17. Gijbels, T., Six, P., Van Gool, L., et al.: A VLSI-architecture for parallel non-linear diffusion with applications in vision. In: Proc IEEE Workshop on VLSI Signal Processing, pp. 398–407 (1994)

  18. Goldberg, N.S., Dupuy, D.E.: Image-guided radiofrequency tumor ablation: challenges and opportunities—part I. J. Vasc. Interv. Radiol. 12(9), 1021–1032 (2001)

    Article  Google Scholar 

  19. Haaga, J.R.: Interventional CT: 30 years’ experience. Eur. Radiol. 15, D116 (2005)

    Article  Google Scholar 

  20. Hatirnaz, I., Gurkaynak, F.K., Leblebici, Y.: A compact modular architecture for the realization of high-speed binary sorting engines based on rank ordering. In: Proceedings of the IEEE International Symposium on Circuits and Systems, ISCAS, vol. 4, pp. 685–688 (2000)

  21. Hawkes, D.J., McClelland, J., Chan, C., et al.: Tissue deformation and shape models in image-guided interventions: a discussion paper. Med. Image Anal. 9(2), 163 (2005)

    Article  Google Scholar 

  22. Hiasat, A.A., Al-Ibrahim, M.M., Gharaibeh, K.M.: Design and implementation of a new efficient median filtering algorithm. IEE Proc. Vis. Image Signal Process. 146(5), 273–278 (1999)

  23. Jiang, M., Crookes, D.: High-performance 3D median filter architecture for medical image despeckling. Electron. Lett. 42(24), 1379 (2006)

    Article  Google Scholar 

  24. Kar, B.K., Yusuf, K.M., Pradhan, D.K.: Bit-serial generalized median filters. In: Proceedings of the IEEE International Symposium on Circuits and Systems, ISCAS, vol. 3, pp. 85–88 (1994)

  25. Karaman, M., Onural, L.: New radix-2-based algorithm for fast median filtering. Electron. Lett. 25(11), 723–724 (1989)

    Article  Google Scholar 

  26. Lee, C.L., Jen, C.-W.: Bit-sliced median filter design based on majority gate. IEE Proceedings, Part G: Circuits, Devices and Systems 139(1), 63–71 (1992)

  27. Lee, C.L., Jen, C.W.: A bit-level scalable median filter using simple majority circuit. In: Proceedings of IEEE International Symposium on VLSI Technology, Systems and Applications, 174–177 (1989)

  28. Li, X., Chen, T.: Nonlinear diffusion with multiple edginess thresholds. Pattern Recognit. 27(8), 1029–1037 (1994)

    Article  Google Scholar 

  29. Oflazer, K.: Design and implementation of a single-chip 1D median filter. IEEE Trans. Acoust. 31(5), 1164–1168 (1983)

    Article  Google Scholar 

  30. Perona, P., Jitendra, M.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  31. Pfister, H.: Archtectures for real-time volume rendering. Future Gener. Comput. Syst. 15(1), 1–9 (1999)

    Article  Google Scholar 

  32. Pfister, H., Kaufman, A.: Cube-4-a scalable architecture for real-time volume rendering. In: Proceedings of the 1996 Symposium on Volume Visualization, pp. 47–54 (1996)

  33. Roncella, R., Saletti, R., Terreni, P.: 70-MHz 2-um CMOS bit-level systolic array median filter. IEEE J. Solid State Circuits 28(5), 530–536 (1993)

    Article  Google Scholar 

  34. Rumpf, M., Strzodka, R.: Nonlinear diffusion in graphics hardware. In: Proceedings of EG/IEEE TCVG Symposium on Visualization, pp. 75–84 (2001)

  35. Tabik, S., Garzon, E.M., Garcia, I., Fernandez, J.J.: Evaluation of parallel paradigms on anisotropic nonlinear diffusion. Eur. Par. Parallel Process. 4128, 1159 (2006)

    Article  Google Scholar 

  36. Viola, I., Kanitsar, A., Groller, M.E.: Hardware-based nonlinear filtering and segmentation using high-level shading languages. IEEE Vis. 309 (2003)

  37. Whitaker, R.T., Pizer, S.M.: A multi-scale approach to nonuniform diffusion. CVGIP Image Underst. 57(1), 99–110 (1993)

    Article  Google Scholar 

  38. Wiehler, K., Heers, J., Schnorr, C., Stiehl, H.S., Grigat, R.-R.: A one-dimensional analog VLSI implementation for nonlinear real-time signal preprocessing. Real Time Imaging 7(1), 127–142 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Department of Defense grant DAMD17-03-2-0001. The authors would like to thank Dr. Vivek Walimbe and Dr. Nancy Knight for their help in editing and refining this manuscript. The authors also thank the anonymous reviewers for their feedback and suggestions in improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Shekhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dandekar, O., Castro-Pareja, C. & Shekhar, R. FPGA-based real-time 3D image preprocessing for image-guided medical interventions. J Real-Time Image Proc 1, 285–301 (2007). https://doi.org/10.1007/s11554-007-0028-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-007-0028-y

Keywords

Navigation