Skip to main content

Achieving real-time object detection and tracking under extreme conditions

Abstract

In this survey, we present a brief analysis of single camera object detection and tracking methods. We also give a comparison of their computational complexities. These methods are designed to accurately perform under difficult conditions such as erratic motion, drastic illumination change, and noise contamination.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Karman, K.-P., von Brandt, A.: Moving object recognition using an adaptive background memory. In: Capellini, V. (ed.) Time-varying Image Processing and Moving Object Recognition, vol. II. Elsevier, Amsterdam, pp 297–307 (1990)

  2. 2.

    Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. In: Proceedings of the 7th International Conference on Computer Vision, Kerkyra, Greece, pp. 255–261 (1999)

  3. 3.

    Stauffer, C., Grimson, E.: Adaptive background mixture models for real-time tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, vol. II, pp. 246–252 (1999)

  4. 4.

    Porikli, F., Tuzel, O.: Bayesian background modeling for foreground detection. In: Proceedings of the ACM Visual Surveillance and Sensor Network (2005)

  5. 5.

    Javed, K., Shafique, O., Shah, M.: A hierarchical approach to robust background subtraction using color and gradient information. In: IEEE Workshop on Motion and Video Computing (2002)

  6. 6.

    Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Proceedings of the European Conference on Computer Vision, Dublin, Ireland, vol. II, pp. 751–767 (2000)

  7. 7.

    Porikli, F., Wren, C.: Change detection by frequency decomposition: wave-back. In: Proceedings of Workshop on Image Analysis for Multimedia Interactive Services, Montreux (2005)

  8. 8.

    Zhu, Q., Avidan, S., Cheng, K.: Learning a sparse, corner-based representation for time-varying background modelling. In: Proceedings of the 10th International Conference on Computer Vision, Beijing, China (2005)

  9. 9.

    Porikli, F.: Multiplicative background–foreground estimation under uncontrolled illumination using intrinsic images. In: Proceedings of IEEE Motion Multi-Workshop, Breckenridge (2005)

  10. 10.

    Wren, C., Azarbayejani, A., Darell, T., Pentland, A.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19, 780–785 (1997)

    Article  Google Scholar 

  11. 11.

    Boykov, Y., Huttenlocher, D.: Adaptive bayesian recognition in tracking rigid objects. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, vol. II, pp 697–704 (2000)

  12. 12.

    Isard, M., Blake, I.: Condensation—conditional density propagation for visual tracking. Int. J. Comput. Vis. 29, 5–28 (1998)

    Article  Google Scholar 

  13. 13.

    Bouaynaya, N., Qu, W., Schonfeld, D.: An online motion-based particle filter for head tracking applications. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia (2005)

  14. 14.

    Zhou, S., Chellappa, R., Moghaddam, B.: Visual tracking and recognition using appearance-based modeling in particle filters. In: Proceedings of the International Conference on Multimedia and Expo, Baltimore (2003)

  15. 15.

    Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, vol. 1, pp. 142–149 (2000)

  16. 16.

    Porikli, F., Tuzel, O.: Object tracking in low-frame-rate video. In: Proceedings of PIE/EI—Image and Video Communication and Processing, San Jose, CA (2005)

  17. 17.

    Avidan, S.: Ensemble tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA (2005)

  18. 18.

    Tuzel, O., Porikli, F., Meer, P.: Region covariance: a fast descriptor for detection and classification. In: Proceedings of the 9th European Conference on Computer Vision, Graz, Austria (2006)

  19. 19.

    Porikli, F., Tuzel, O., Meer, P.: Covariance tracking using model update based on lie algebra. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, NY (2006)

  20. 20.

    Porikli, F.: Integral histogram: a fast way to extract histograms in cartesian spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, vol. 1, pp. 829–836 (2005)

  21. 21.

    McCurry, P., Morgan, F., Kilmartin, L.: Xilinx fpga implementation of a pixel processor for object detection applications. In: Proceedings of the International Conference on Image Processing, vol. 3, pp. 346–349 (2001)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fatih Porikli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Porikli, F. Achieving real-time object detection and tracking under extreme conditions. J Real-Time Image Proc 1, 33–40 (2006). https://doi.org/10.1007/s11554-006-0011-z

Download citation

Keywords

  • Object Detection
  • Background Model
  • Tracking Method
  • Erratic Motion
  • Graphic Processor Unit