Skip to main content
Log in

Intraosseous Vascularity of the Distal Radius: Anatomy and Clinical Implications in Distal Radius Fractures

  • Original Paper
  • Published:
HAND

Abstract

This study aimed to describe the intraosseous blood supply of the distal radius and its clinical implications in distal radius fractures. Twelve adult wrists from fresh cadavers (six males, six females, 50–90 years of age, mean 68 years) were injected through the brachial artery with latex. Dissections were performed using magnifying loupes and hands were processed using the Spalteholz technique. The distal radius was supplied by three main vascular systems: epiphyseal, metaphyseal, and diaphyseal. The palmar epiphyseal vessels branched from the radial artery, palmar carpal arch, and anterior branch of the anterior interosseous artery. These vessels entered the bone through the radial styloid process at level of the Lister's tubercle but palmar and sigmoid notch. The dorsal contribution to Lister's tubercle is to the dorsal epiphyseal vessels. The intraosseous point of entry to the dorsal epiphyseal vessels was from the fourth and fifth extensor compartment arteries. In the metaphyseal area, we found numerous periosteal and cortical branches originating deep in the pronator quadratus and the anterior interosseous artery. These branches provided the main supply to the distal radius. Vessels perforated the bone and formed an anastomotic network. In the diaphyseal area, only the nutrient vessel provided intraosseous vascularity in the distal radius. Numerous metaphyseal–epiphyseal branches arise within the pronator quadratus and the anterior interosseous artery and course towards the distal radius. These branches may be fundamental to the healing of the distal radius fractures and make nonunion a rare complication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Haerle M, Schaller HE, Mathoulin C. Vascular anatomy of the palmar surfaces of the distal radius and ulna: its relevance to pedicled bone grafts at the distal palmar forearm. J Hand Surg Br. 2003;28(2):131–6.

    Article  CAS  PubMed  Google Scholar 

  2. Inoue Y, Taylor GI. The angiosomes of the forearm: anatomic study and clinical implications. Plast Reconstr Surg. 1996;98(2):195–210.

    Article  CAS  PubMed  Google Scholar 

  3. Larson AN, Bishop AT, Shin AY. Dorsal distal radius vascularized pedicled bone grafts for scaphoid nonunions. Tech Hand Up Extrem Surg. 2006;10(4):212–23.

    Article  PubMed  Google Scholar 

  4. Matthew MK, Hausman MR. Surgical approaches from the angiosomal perspective. Chapter 9. In: Slutsky DJ, Osterman AL, editors. Fractures and injuries of the distal radius and carpus: the cutting edge. Philadelphia: Saunders; 2009. p. 103–23.

    Google Scholar 

  5. Mih AD. Vascularized bone graft for scaphoid nonunions. Tech Hand Up Extrem Surg. 2004;8(3):156–60.

    Article  PubMed  Google Scholar 

  6. Orbay J, Badia A, Khoury RK, Gonzalez E, Indriago I. Volar fixed-angle fixation of distal radius fractures: the DVR plate. Tech Hand Up Extrem Surg. 2004;8(3):142–8.

    Article  PubMed  Google Scholar 

  7. Ovidiu A. Management of complication of distal radius and ulna fractures. IX Instructional Course Lectures of EFORT. J Bone Jt Surg Br. 2002;84(supp III):358–9.

    Google Scholar 

  8. Rhinelander FW. The normal microcirculation of diaphyseal cortex and its response to fracture. J Bone Jt Surg Am. 1968;50:784–800.

    CAS  Google Scholar 

  9. Sheetz KK, Bishop AT, Berger RA. The arterial blood supply of the distal radius and ulna and its potential use in vascularized pedicled bone grafts. J Hand Surg Am. 1995;20:902–14.

    Article  CAS  PubMed  Google Scholar 

  10. Shin AY, Bishop AT. Treatment of Kienböck's disease with dorsal distal radius pedicled vascularized bone grafts. Atlas Hand Clin. 1999;4:91–118.

    Google Scholar 

  11. Shin AY, Bishop AT. Vascularized bone grafts from the distal radius for disorders of the carpus. J Am Acad Orthop Surg. 2002;2(4):181–94.

    Google Scholar 

  12. Shin AY, Bishop AT. Pedicled vascularized bone grafts for disorders of the carpus: scaphoid nonunion and Kienböck's disease. J Am Acad Orthop Surg. 2002;10(3):210–6.

    PubMed  Google Scholar 

  13. Spalteholz W. Ueber das Durchsichtigmachen von menschlichen und tierischen Präparaten; nebst Anhang: Ueber Knochenfärburg. Leipzig: S. Hirzel; 1911. p. 3–220.

    Google Scholar 

  14. Taleisnik J, Kelly P. The extraosseous and intraosseous blood supply of the scaphoid bone. J Bone Jt Surg Am. 1966;48:1125–37.

    CAS  Google Scholar 

  15. Trueta J. Osteogénesis reparadora. In: La estructura del cuerpo humano. Estudio sobre el desarrollo y decadencia. Barcelona, Editorial Labor S.A., 1975. p. 241–251.

  16. Waitayawinyu T, Robertson C, Chin SH, Schlenker JD, Pettrone S, Trumble TE. The detailed anatomy of the 1,2 intercompartmental supraretinacular artery for vascularized bone grafting of scaphoid nonunions. J Hand Surg Am. 2008;33:168–74.

    Article  PubMed  Google Scholar 

  17. Zaidemberg C, Siebert JW, Angrigiani C. A new vascularized bone graft for scaphoid nonunion. J Hand Surg Am. 1991;16:474–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Lamas.

About this article

Cite this article

Lamas, C., Llusà, M., Méndez, A. et al. Intraosseous Vascularity of the Distal Radius: Anatomy and Clinical Implications in Distal Radius Fractures. HAND 4, 418–423 (2009). https://doi.org/10.1007/s11552-009-9204-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11552-009-9204-9

Keywords

Navigation