Skip to main content

Advertisement

Log in

Three-dimensional quantification of skeletal midfacial complex symmetry

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Quantification of skeletal symmetry in a healthy population could have a strong impact on the reconstructive surgical procedures where mirroring of the contralateral healthy side acts as a clinical reference for the restoration of unilateral defects. Hence, the aim of this study was to three-dimensionally assess the symmetry of skeletal midfacial complex in skeletal class I patients.

Methods

A sample of 100 cone beam computed tomography (CBCT) scans (50 males, 50 females; age range: 19–40 years) were recruited. Automated segmentation of the skeletal midfacial complex was performed to create a three-dimensional (3D) virtual model using a convolutional neural network (CNN)-based segmentation tool. Thereafter, the segmented model was mirrored and registered to quantify skeletal symmetry using a color-coded conformance mapping based on a surface part comparison analysis.

Results

Overall, the mean and root-mean-square (RMS) differences between complete true and mirrored models were 0.14 ± 0.12 and 0.87 ± 0.21 mm, respectively. Female patients had a significantly more symmetrical midfacial complex (mean difference: 0.11 ± 0.1 mm, RMS: 0.81 ± 0.17 mm) compared to male patients (mean difference: 0.16 ± 0.13 mm, RMS: 0.94 ± 0.23 mm). No significant difference existed between left and right sides irrespective of the patient’s gender.

Conclusion

The comparison between true and mirrored complete and left/right split midfacial complex showed symmetry within a clinically acceptable range of 1 mm, which justifies the applicability of using the mirroring technique. The presented data could act as a reference guide for surgeons during planning of reconstructive surgical procedures and outcome assessment at follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yamamoto K, Matsusue Y, Horita S, Murakami K, Sugiura T, Kirita T (2014) Clinical analysis of midfacial fractures. Mater Sociomed 26:21–25. https://doi.org/10.5455/msm.2014.26.21-25

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zaleckas L, Pečiulienė V, Gendvilienė I, Pūrienė A, Rimkuvienė J (2015) Prevalence and etiology of midfacial fractures: a study of 799 cases. Medicina 51:222–227. https://doi.org/10.1016/j.medici.2015.06.005

    Article  PubMed  Google Scholar 

  3. VandeGriend ZP, Hashemi A, Shkoukani M (2015) Changing trends in adult facial trauma epidemiology. J Craniofac Surg 26:108–112. https://doi.org/10.1097/scs.0000000000001299

    Article  PubMed  Google Scholar 

  4. Schmelzeisen R, Gellrich NC, Schoen R, Gutwald R, Zizelmann C, Schramm A (2004) Navigation-aided reconstruction of medial orbital wall and floor contour in cranio-maxillofacial reconstruction. Injury 35:955–962. https://doi.org/10.1016/j.injury.2004.06.005

    Article  PubMed  Google Scholar 

  5. Zizelmann C, Gellrich NC, Metzger MC, Schoen R, Schmelzeisen R, Schramm A (2007) Computer-assisted reconstruction of orbital floor based on cone beam tomography. Br J Oral Maxillofac Surg 45:79–80. https://doi.org/10.1016/j.bjoms.2005.06.031

    Article  PubMed  Google Scholar 

  6. Swennen GRJ (2014) Timing of three-dimensional virtual treatment planning of orthognathic surgery: a prospective single-surgeon evaluation on 350 consecutive cases. Oral Maxillofac Surg Clin North Am 26:475–485. https://doi.org/10.1016/j.coms.2014.08.001

    Article  PubMed  Google Scholar 

  7. Dubois L, Schreurs R, Jansen J, Maal TJ, Essig H, Gooris PJ, Becking AG (2015) Predictability in orbital reconstruction: a human cadaver study. Part II: navigation-assisted orbital reconstruction. J Craniomaxillofac Surg 43:2042–2049. https://doi.org/10.1016/j.jcms.2015.07.020

    Article  PubMed  Google Scholar 

  8. Gong X, He Y, He Y, An JG, Yang Y, Zhang Y (2014) Quantitation of zygomatic complex symmetry using 3-dimensional computed tomography. J Oral Maxillofac Surg 72:2053.e1–8. https://doi.org/10.1016/j.joms.2014.06.447

    Article  PubMed  Google Scholar 

  9. Mao SH, Hsieh YH, Chou PY, Shyu VB, Chen CT, Chen CH (2016) Quantitative determination of zygomaticomaxillary complex position based on computed tomographic imaging. Ann Plast Surg 76(Suppl 1):S117–S120. https://doi.org/10.1097/sap.0000000000000703

    Article  PubMed  Google Scholar 

  10. Morgan N, Suryani I, Shujaat S, Jacobs R (2021) Three-dimensional facial hard tissue symmetry in a healthy caucasian population group: a systematic review. Clin Oral Investig 25:6081–6092. https://doi.org/10.1007/s00784-021-04126-w

    Article  PubMed  Google Scholar 

  11. Khalifa GA, Abd El Moniem NA, Elsayed SA, Qadry Y (2016) Segmental mirroring: does it eliminate the need for intraoperative readjustment of the virtually pre-bent reconstruction plates and is it economically valuable? J Oral Maxillofac Surg 74:621–630. https://doi.org/10.1016/j.joms.2015.09.036

    Article  PubMed  Google Scholar 

  12. Schramm A, Suarez-Cunqueiro MM, Rücker M, Kokemueller H, Bormann KH, Metzger MC, Gellrich NC (2009) Computer-assisted therapy in orbital and mid-facial reconstructions. Int J Med Robot 5:111–124. https://doi.org/10.1002/rcs.245

    Article  CAS  PubMed  Google Scholar 

  13. Benazzi S, Senck S (2011) Comparing 3-dimensional virtual methods for reconstruction in craniomaxillofacial surgery. J Oral Maxillofac Surg 69:1184–1194. https://doi.org/10.1016/j.joms.2010.02.028

    Article  PubMed  Google Scholar 

  14. Jozaghi Y, Chan HHL, Davies JC, Irish JC (2019) Establishing orbital floor symmetry to support mirror imaging in computer-aided reconstruction of the orbital floor. J Craniofac Surg 30:1888–1890. https://doi.org/10.1097/scs.0000000000005368

    Article  PubMed  Google Scholar 

  15. Jansen J, Dubois L, Schreurs R, Gooris PJJ, Maal TJJ, Beenen LF, Becking AG (2018) Should virtual mirroring be used in the preoperative planning of an orbital reconstruction? J Oral Maxillofac Surg 76:380–387. https://doi.org/10.1016/j.joms.2017.09.018

    Article  PubMed  Google Scholar 

  16. Gibelli D, Cellina M, Gibelli S, Oliva AG, Termine G, Pucciarelli V, Dolci C, Sforza C (2018) Assessing symmetry of zygomatic bone through three-dimensional segmentation on computed tomography scan and “mirroring” procedure: a contribution for reconstructive maxillofacial surgery. J Craniomaxillofac Surg 46:600–604. https://doi.org/10.1016/j.jcms.2018.02.012

    Article  PubMed  Google Scholar 

  17. Ho J, Schreurs R, Aydi S, Rezai R, Maal TJJ, van Wijk AJ, Beenen LFM, Dubois L, Milstein DMJ, Becking AG (2017) Natural variation of the zygomaticomaxillary complex symmetry in normal individuals. J Craniomaxillofac Surg 45:1927–1933. https://doi.org/10.1016/j.jcms.2017.09.017

    Article  PubMed  Google Scholar 

  18. Kavur AE, Gezer NS, Barış M, Şahin Y, Özkan S, Baydar B, Yüksel U, Kılıkçıer Ç, Olut Ş, Bozdağı Akar G, Ünal G, Dicle O, Selver MA (2020) Comparison of semi-automatic and deep learning-based automatic methods for liver segmentation in living liver transplant donors. Diagn Interv Radiol (Ankara, Turkey) 26:11–21. https://doi.org/10.5152/dir.2019.19025

    Article  Google Scholar 

  19. Tingelhoff K, Moral AI, Kunkel ME, Rilk M, Wagner I, Eichhorn KG, Wahl FM, Bootz F (2007) Comparison between manual and semi-automatic segmentation of nasal cavity and paranasal sinuses from CT images. Annu Int Conf IEEE Eng Med Biol Soc 2007:5505–5508. https://doi.org/10.1109/iembs.2007.4353592

    Article  CAS  PubMed  Google Scholar 

  20. Sozzi D, Gibelli D, Canzi G, Tagliaferri A, Monticelli L, Cappella A, Bozzetti A, Sforza C (2018) Assessing the precision of posttraumatic orbital reconstruction through “mirror” orbital superimposition: a novel approach for testing the anatomical accuracy. J Craniomaxillofac Surg 46:1258–1262. https://doi.org/10.1016/j.jcms.2018.05.040

    Article  PubMed  Google Scholar 

  21. Morgan N, Van Gerven A, Smolders A, de Faria Vasconcelos K, Willems H, Jacobs R (2022) Convolutional neural network for automatic maxillary sinus segmentation on cone-beam computed tomographic images. Sci Rep 12:7523. https://doi.org/10.1038/s41598-022-11483-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shujaat S, Jazil O, Willems H, Van Gerven A, Shaheen E, Politis C, Jacobs R (2021) Automatic segmentation of the pharyngeal airway space with convolutional neural network. J Dent 111:103705. https://doi.org/10.1016/j.jdent.2021.103705

    Article  CAS  PubMed  Google Scholar 

  23. Verhelst P-J, Smolders A, Beznik T, Meewis J, Vandemeulebroucke A, Shaheen E, Van Gerven A, Willems H, Politis C, Jacobs R (2021) Layered deep learning for automatic mandibular segmentation in cone-beam computed tomography. J Dent 114:103786. https://doi.org/10.1016/j.jdent.2021.103786

    Article  CAS  PubMed  Google Scholar 

  24. Preda F, Morgan N, Van Gerven A, Nogueira-Reis F, Smolders A, Wang X, Nomidis S, Shaheen E, Willems H, Jacobs R (2022) Deep convolutional neural network-based automated segmentation of the maxillofacial complex from cone-beam computed tomography: a validation study. J Dent 124:104238. https://doi.org/10.1016/j.jdent.2022.104238

    Article  PubMed  Google Scholar 

  25. Hopper RA, Salemy S, Sze RW (2006) Diagnosis of midface fractures with CT: what the surgeon needs to know. Radiographics 26:783–793. https://doi.org/10.1148/rg.263045710

    Article  PubMed  Google Scholar 

  26. Mehta N, Butala P, Bernstein MP (2012) The imaging of maxillofacial trauma and its pertinence to surgical intervention. Radiol Clin North Am 50:43–57. https://doi.org/10.1016/j.rcl.2011.08.005

    Article  PubMed  Google Scholar 

  27. An S, Lee JY, Chung CJ, Kim KH (2017) Comparison of different midsagittal plane configurations for evaluating craniofacial asymmetry by expert preference. Am J Orthod Dentofac Orthop 152:788–797. https://doi.org/10.1016/j.ajodo.2017.04.024

    Article  Google Scholar 

  28. Elkenawy I, Fijany L, Colak O, Paredes NA, Gargoum A, Abedini S, Cantarella D, Dominguez-Mompell R, Sfogliano L, Moon W (2020) An assessment of the magnitude, parallelism, and asymmetry of micro-implant-assisted rapid maxillary expansion in non-growing patients. Prog Orthod 21:42–42. https://doi.org/10.1186/s40510-020-00342-4

    Article  PubMed  PubMed Central  Google Scholar 

  29. Andrade LM, Rodrigues da Silva AMB, Magri LV, Rodrigues da Silva MAM (2017) Repeatability study of angular and linear measurements on facial morphology analysis by means of stereophotogrammetry. J Craniofac Surg 28:1107

    Article  PubMed  Google Scholar 

  30. Camison L, Bykowski M, Lee WW, Carlson JC, Roosenboom J, Goldstein JA, Losee JE, Weinberg SM (2018) Validation of the vectra H1 portable three-dimensional photogrammetry system for facial imaging. Int J Oral Maxillofac Surg 47:403–410. https://doi.org/10.1016/j.ijom.2017.08.008

    Article  CAS  PubMed  Google Scholar 

  31. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163. https://doi.org/10.1016/j.jcm.2016.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gateño J, Jones TL, Shen SGF, Chen KC, Jajoo A, Kuang T, English JD, Nicol M, Teichgraeber JF, Xia JJ (2018) Fluctuating asymmetry of the normal facial skeleton. Int J Oral Maxillofac Surg 47:534–540. https://doi.org/10.1016/j.ijom.2017.10.011

    Article  PubMed  Google Scholar 

  33. Graham JH, Raz S, Hel-Or H, Nevo E (2010) Fluctuating asymmetry: methods, theory, and applications. Symmetry 2:466–540

    Article  Google Scholar 

  34. Davies JC, Chan HHL, Jozaghi Y, Goldstein DP, Irish JC (2019) Analysis of simulated mandibular reconstruction using a segmental mirroring technique. J Craniomaxillofac Surg 47:468–472. https://doi.org/10.1016/j.jcms.2018.12.016

    Article  PubMed  Google Scholar 

  35. Jacobs R, Salmon B, Codari M, Hassan B, Bornstein MM (2018) Cone beam computed tomography in implant dentistry: recommendations for clinical use. BMC Oral Health 18:88. https://doi.org/10.1186/s12903-018-0523-5

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang L, Chen KC, Gao Y, Shi F, Liao S, Li G, Shen SG, Yan J, Lee PK, Chow B, Liu NX, Xia JJ, Shen D (2014) Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization. Med Phys 41:043503. https://doi.org/10.1118/1.4868455

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mendoza LV, Bellot-Arcís C, Montiel-Company JM, García-Sanz V, Almerich-Silla JM, Paredes-Gallardo V (2018) Linear and volumetric mandibular asymmetries in adult patients with different skeletal classes and vertical patterns: a cone-beam computed tomography study. Sci Rep 8:12319. https://doi.org/10.1038/s41598-018-30270-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thiesen G, Freitas MPM, Araújo EA, Gribel BF, Kim KB (2018) Three-dimensional evaluation of craniofacial characteristics related to mandibular asymmetries in skeletal class I patients. Am J Orthod Dentofac Orthop 154:91–98. https://doi.org/10.1016/j.ajodo.2017.10.031

    Article  Google Scholar 

  39. Thiesen G, Freitas MPM, Gribel BF, Kim KB (2019) Comparison of maxillomandibular asymmetries in adult patients presenting different sagittal jaw relationships. Dent Press J Orthod 24:54–62. https://doi.org/10.1590/2177-6709.24.4.054-062.oar

    Article  Google Scholar 

  40. Duran GS, Dindaroglu F, Kutlu P (2019) Hard- and soft-tissue symmetry comparison in patients with class III malocclusion. Am J Orthod Dentofac Ortho 155:509–522. https://doi.org/10.1016/j.ajodo.2018.05.021

    Article  Google Scholar 

  41. Hingsammer L, Seier T, Johner JP, Blumer M, Gander T, Rücker M, Wagner M (2020) Does zygomatic complex symmetry differ between healthy individuals and surgically treated patients using intraoperative 3-dimensional cone beam computed tomographic imaging? J Oral Maxillofac Surg 78:798.e1-798.e7. https://doi.org/10.1016/j.joms.2019.11.027

    Article  PubMed  Google Scholar 

  42. Ekrami O, Claes P, White JD, Weinberg SM, Marazita ML, Walsh S, Shriver MD, Van Dongen S (2020) A multivariate approach to determine the dimensionality of human facial asymmetry. Symmetry. https://doi.org/10.3390/sym12030348

    Article  PubMed  PubMed Central  Google Scholar 

  43. Carrao V, Tofigh M, Greenberg AM (2018) Virtual surgical planning for orthognathic surgery. In: Greenberg A (ed) Digital technologies in craniomaxillofacial surgery. Springer, New York, pp 117–155

    Chapter  Google Scholar 

Download references

Acknowledgements

Thanks to Kevin Dotremont from Materialise N.V., Leuven, Belgium, for helping to develop the methodology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nermin Morgan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was conducted in compliance with the World Medical Association Declaration of Helsinki on medical research. Ethical approval was obtained from the Ethical Review Board of the University Hospitals Leuven (reference number: S57587).

Informed consent

For this type of study, formal consent was not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgan, N., Shujaat, S., Jazil, O. et al. Three-dimensional quantification of skeletal midfacial complex symmetry. Int J CARS 18, 611–619 (2023). https://doi.org/10.1007/s11548-022-02775-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-022-02775-0

Keyword

Navigation