Skip to main content

Advertisement

Log in

A hybrid registration method using the mandibular bone surface for electromagnetic navigation in mandibular surgery

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

To utilize navigated mandibular (reconstructive) surgery, accurate registration of the preoperative CT scan with the actual patient in the operating room (OR) is required. In this phantom study, the feasibility of a noninvasive hybrid registration method is assessed. This method consists of a point registration with anatomic landmarks for initialization and a surface registration using the bare mandibular bone surface for optimization.

Methods

Three mandible phantoms with reference notches on two osteotomy planes were 3D printed. An electromagnetic tracking system in combination with 3D Slicer software was used for navigation. Different configurations, i.e., different surface point areas and number and configuration of surface points, were tested with a dentate phantom (A) in a metal-free environment. To simulate the intraoperative environment and different anatomies, the registration procedure was also performed with an OR bed using the dentate phantom and two (partially) edentulous phantoms with atypical anatomy (B and C). The accuracy of the registration was calculated using the notches on the osteotomy planes and was expressed as the target registration error (TRE). TRE values of less than 2.0 mm were considered as clinically acceptable.

Results

In all experiments, the mean TRE was less than 2.0 mm. No differences were found using different surface point areas or number or configurations of surface points. Registration accuracy in the simulated intraoperative setting was—mean (SD)—0.96 (0.22), 0.93 (0.26), and 1.50 (0.28) mm for phantom A, phantom B, and phantom C.

Conclusion

Hybrid registration is a noninvasive method that requires only a small area of the bare mandibular bone surface to obtain high accuracy in phantom setting. Future studies should test this method in clinical setting during actual surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors are willing to share the data for further research purposes.

References

  1. Brouwer de Koning SG, Riksen JJM, Ter Braak TP, van Alphen MJA, van der Heijden F, Schreuder WH, Karssemakers LHE, Karakullukcu MB, van Veen RLP (2020) Utilization of a 3D printed dental splint for registration during electromagnetically navigated mandibular surgery. Int J CARS 15:1997–2003. https://doi.org/10.1007/s11548-020-02271-3

    Article  CAS  Google Scholar 

  2. Brouwer de Koning SG, Ter Braak TP, Geldof F, van Veen RLP, van Alphen MJA, Karssemakers LHE, Schreuder WH, Karakullukcu MB (2021) Evaluating the accuracy of resection planes in mandibular surgery using a preoperative, intraoperative, and postoperative approach. Int J Oral Maxillofac Surg 50:287–293. https://doi.org/10.1016/j.ijom.2020.06.013

    Article  CAS  PubMed  Google Scholar 

  3. Powcharoen W, Yang WF, Yan Li K, Zhu W, Su YX (2019) Computer-assisted versus conventional freehand mandibular reconstruction with fibula free flap: a systematic review and meta-analysis. Plast Reconstr Surg 144:1417–1428. https://doi.org/10.1097/prs.0000000000006261

    Article  CAS  PubMed  Google Scholar 

  4. Brouwer de Koning SG, Geldof F, van Veen RLP, van Alphen MJA, Karssemakers LHE, Nijkamp J, Schreuder WH, Ruers TJM, Karakullukcu MB (2021) Electromagnetic surgical navigation in patients undergoing mandibular surgery. Sci Rep 11:4657. https://doi.org/10.1038/s41598-021-84129-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bernstein JM, Daly MJ, Chan H, Qiu J, Goldstein D, Muhanna N, de Almeida JR, Irish JC (2017) Accuracy and reproducibility of virtual cutting guides and 3D-navigation for osteotomies of the mandible and maxilla. PLoS ONE 12:e0173111. https://doi.org/10.1371/journal.pone.0173111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ter Braak TP, Brouwer de Koning SG, van Alphen MJA, van der Heijden F, Schreuder WH, van Veen RLP, Karakullukcu MB (2020) A surgical navigated cutting guide for mandibular osteotomies: accuracy and reproducibility of an image-guided mandibular osteotomy. Int J CARS 15:1719–1725. https://doi.org/10.1007/s11548-020-02234-8

    Article  Google Scholar 

  7. Casap N, Wexler A, Eliashar R (2008) Computerized navigation for surgery of the lower jaw: comparison of 2 navigation systems. J Oral Maxillofac Surg 66:1467–1475. https://doi.org/10.1016/j.joms.2006.06.272

    Article  PubMed  Google Scholar 

  8. Sukegawa S, Kanno T, Furuki Y (2018) Application of computer-assisted navigation systems in oral and maxillofacial surgery. Jpn Dent Sci Rev 54:139–149. https://doi.org/10.1016/j.jdsr.2018.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hwang YE, Kang SH, Kim HK (2019) Errors according to the number of registered markers used in navigation-assisted surgery of the mandible. Head Face Med 15:6. https://doi.org/10.1186/s13005-019-0190-z

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mascott CR, Sol JC, Bousquet P, Lagarrigue J, Lazorthes Y, Lauwers-Cances V (2006) Quantification of true in vivo (application) accuracy in cranial image-guided surgery: influence of mode of patient registration. Neurosurgery 59:ONS146–156; discussion ONS146–156 . https://doi.org/10.1227/01.Neu.0000220089.39533.4e

  11. Chang CM, Fang KM, Huang TW, Wang CT, Cheng PW (2013) Three-dimensional analysis of the surface registration accuracy of electromagnetic navigation systems in live endoscopic sinus surgery. Rhinology 51:343–348. https://doi.org/10.4193/Rhino12.165

    Article  CAS  PubMed  Google Scholar 

  12. Schicho K, Figl M, Seemann R, Donat M, Pretterklieber ML, Birkfellner W, Reichwein A, Wanschitz F, Kainberger F, Bergmann H, Wagner A, Ewers R (2007) Comparison of laser surface scanning and fiducial marker-based registration in frameless stereotaxy. Technical note J Neurosurg 106:704–709. https://doi.org/10.3171/jns.2007.106.4.704

    Article  PubMed  Google Scholar 

  13. de Geer AF, Brouwer de Koning SG, van Alphen MJA, Van der Mierden S, Zuur CL, Van Leeuwen FWB, Loeve AJ, van Veen RLP, Karakullukcu MB (2022) Registration methods for surgical navigation of the mandible: a systematic review. Int J Oral Maxillofac Surg. https://doi.org/10.1016/j.ijom.2022.01.017

  14. Block MS, Emery RW, Cullum DR, Sheikh A (2017) Implant placement is more accurate using dynamic navigation. J Oral Maxillofac Surg 75:1377–1386. https://doi.org/10.1016/j.joms.2017.02.026

    Article  PubMed  Google Scholar 

  15. Edelmann C, Wetzel M, Knipper A, Luthardt RG, Schnutenhaus S (2021) Accuracy of computer-assisted dynamic navigation in implant placement with a fully digital approach: a prospective clinical trial. J Clin Med 10. https://doi.org/10.3390/jcm10091808

  16. Scheyer ET, Mandelaris GA, McGuire MK, AlTakriti MA, Stefanelli LV (2020) Implant placement under dynamic navigation using trace registration: case presentations. Int J Periodontics Restorative Dent 40:e241-e248. https://doi.org/10.11607/prd.4479

  17. Berger M, Nova I, Kallus S, Ristow O, Freudlsperger C, Eisenmann U, Dickhaus H, Engel M, Hoffmann J, Seeberger R (2017) Can electromagnetic-navigated maxillary positioning replace occlusional splints in orthognathic surgery? A clinical pilot study. J Craniomaxillofac Surg 45:1593–1599. https://doi.org/10.1016/j.jcms.2017.08.005

    Article  PubMed  Google Scholar 

  18. Lutz JC, Nicolau S, Agnus V, Bodin F, Wilk A, Bruant-Rodier C, Rémond Y, Soler L (2015) A novel navigation system for maxillary positioning in orthognathic surgery: preclinical evaluation. J Craniomaxillofac Surg 43:1723–1730. https://doi.org/10.1016/j.jcms.2015.08.001

    Article  PubMed  Google Scholar 

  19. Sun Q, Mai Y, Yang R, Ji T, Jiang X, Chen X (2020) Fast and accurate online calibration of optical see-through head-mounted display for AR-based surgical navigation using Microsoft HoloLens. Int J CARS 15:1907–1919. https://doi.org/10.1007/s11548-020-02246-4

    Article  Google Scholar 

  20. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341. https://doi.org/10.1016/j.mri.2012.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lasso A, Heffter T, Rankin A, Pinter C, Ungi T, Fichtinger G (2014) PLUS: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng 61:2527–2537. https://doi.org/10.1109/tbme.2014.2322864

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tokuda J, Fischer GS, Papademetris X, Yaniv Z, Ibanez L, Cheng P, Liu H, Blevins J, Arata J, Golby AJ, Kapur T, Pieper S, Burdette EC, Fichtinger G, Tempany CM, Hata N (2009) OpenIGTLink: an open network protocol for image-guided therapy environment. Int J Med Robot 5:423–434. https://doi.org/10.1002/rcs.274

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ungi T, Lasso A, Fichtinger G (2016) Open-source platforms for navigated image-guided interventions. Med Image Anal 33:181–186. https://doi.org/10.1016/j.media.2016.06.011

    Article  PubMed  Google Scholar 

  24. Fitzpatrick JM, West JB (2001) The distribution of target registration error in rigid-body point-based registration. IEEE Trans Med Imaging 20:917–927. https://doi.org/10.1109/42.952729

    Article  CAS  PubMed  Google Scholar 

  25. Maurer C, Fitzpatrick JM, Wang M, Galloway R, Maciunas R, Allen G (1997) Registration of head volume images using implantable fiducial markers. Medical Imaging 1997 3034. https://doi.org/10.1117/12.274143

  26. West JB, Fitzpatrick JM, Toms SA, Maurer CR, Jr., Maciunas RJ (2001) Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery 48:810–816; discussion 816–817. https://doi.org/10.1097/00006123-200104000-00023

  27. Eggers G, Muhling J, Marmulla R (2006) Image-to-patient registration techniques in head surgery. Int J Oral Maxillofac Surg 35:1081–1095. https://doi.org/10.1016/j.ijom.2006.09.015

    Article  CAS  PubMed  Google Scholar 

  28. Marmulla R, Mühling J, Eggers G (2007) Image-to-patient registration by natural anatomical surfaces of the head. Cent Europ J Med 2:89–102. https://doi.org/10.2478/s11536-006-0042-7

    Article  Google Scholar 

  29. Lubbers HT, Messmer P, Gratz KW, Ellis RE, Matthews F (2010) Misjudgments at the mandibular angle: freehand versus computer-assisted screw positioning. J Craniofac Surg 21:1012–1017. https://doi.org/10.1097/SCS.0b013e3181e20a37

    Article  PubMed  Google Scholar 

  30. Sukegawa S, Kanno T, Shibata A, Matsumoto K, Sukegawa-Takahashi Y, Sakaida K, Furuki Y (2017) Use of an intraoperative navigation system for retrieving a broken dental instrument in the mandible: a case report. J Med Case Rep 11:14. https://doi.org/10.1186/s13256-016-1182-2

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sukegawa S, Kanno T, Shibata A, Matsumoto K, Sukegawa-Takahashi Y, Sakaida K, Furuki Y (2017) Intraoperative navigation-assisted accurate bone lid surgery to remove a mandibular lesion: A case report. Oral Maxillofac Surg Cases 3:15–19. https://doi.org/10.1016/j.omsc.2017.01.008

    Article  Google Scholar 

  32. Stein KM (2015) Use of intraoperative navigation for minimally invasive retrieval of a broken dental needle. J Oral Maxillofac Surg 73:1911–1916. https://doi.org/10.1016/j.joms.2015.04.033

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the clinical implementation team from the Netherlands Cancer Institute for using their equipment and for their help during the conceptualization of the experiments.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conceptualization and methodology, AFG contributed to formal analysis and investigation, AFG contributed to writing—original draft, MJAA, CLZ, AJL, RLPV, MBK contributed to writing—review and editing, MJAA, CLZ, AJL, RLPV, MBK contributed to supervision.

Corresponding author

Correspondence to M. J. A. van Alphen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Geer, A.F., van Alphen, M.J.A., Zuur, C.L. et al. A hybrid registration method using the mandibular bone surface for electromagnetic navigation in mandibular surgery. Int J CARS 17, 1343–1353 (2022). https://doi.org/10.1007/s11548-022-02610-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-022-02610-6

Keywords

Navigation