Method
|
Procedural
|
Non-Procedural
|
A
|
Macro
|
Weighted
|
---|
P
|
R
|
F1
|
P
|
R
|
F1
| |
P
|
R
|
F1
|
wP
|
wR
|
wF1
|
---|
RandomForest
|
0.738
|
0.913
|
0.816
|
0.747
|
0.443
|
0.556
|
0.740
|
0.743
|
0.678
|
0.686
|
0.741
|
0.740
|
0.721
|
MultinomialNaïveBayes
|
0.717
|
0.965
|
0.823
|
0.852
|
0.344
|
0.491
|
0.737
|
0.785
|
0.655
|
0.657
|
0.767
|
0.737
|
0.701
|
LinearSVM
|
0.706
|
0.964
|
0.815
|
0.835
|
0.308
|
0.450
|
0.723
|
0.770
|
0.636
|
0.633
|
0.753
|
0.723
|
0.681
|
LogisticRegression
|
0.678
|
0.981
|
0.802
|
0.861
|
0.199
|
0.323
|
0.694
|
0.770
|
0.590
|
0.562
|
0.745
|
0.694
|
0.626
|
FastText
|
0.821
|
0.846
|
0.833
|
0.720
|
0.683
|
0.701
|
0.786
|
0.771
|
0.765
|
0.767
|
0.784
|
0.786
|
0.785
|
FastText[bal]
|
0.824
|
0.846
|
0.835
|
0.722
|
0.689
|
0.705
|
0.788
|
0.773
|
0.767
|
0.770
|
0.786
|
0.788
|
0.787
|
1D-CNN
|
0.889
|
0.834
|
0.861
|
0.742
|
0.821
|
0.780
|
0.829
|
0.816
|
0.828
|
0.820
|
0.835
|
0.829
|
0.831
|
1D-CNN[bal]
|
0.881
|
0.851
|
0.866
|
0.758
|
0.803
|
0.780
|
0.833
|
0.819
|
0.827
|
0.823
|
0.836
|
0.833
|
0.834
|
BiLSTM
|
0.894
|
0.896
|
0.895
|
0.820
|
0.817
|
0.818
|
0.867
|
0.857
|
0.856
|
0.857
|
0.867
|
0.867
|
0.867
|
BiLSTM[bal]
|
0.887
|
0.910
|
0.898
|
0.837
|
0.801
|
0.819
|
0.870
|
0.862
|
0.855
|
0.859
|
0.869
|
0.870
|
0.869
|
BERT
|
0.875
|
0.916
|
0.895
|
0.843
|
0.775
|
0.808
|
0.864
|
0.859
|
0.845
|
0.851
|
0.863
|
0.864
|
0.863
|
BERT[bal]
|
0.867
|
0.922
|
0.894
|
0.850
|
0.757
|
0.801
|
0.862
|
0.859
|
0.840
|
0.847
|
0.861
|
0.862
|
0.860
|
ClinicalBERT
|
0.886
|
0.915
|
0.900
|
0.845
|
0.797
|
0.821
|
0.872
|
0.866
|
0.856
|
0.860
|
0.871
|
0.871
|
0.871
|
ClinicalBERT[bal]
|
0.874
|
0.922
|
0.897
|
0.851
|
0.8771
|
0.809
|
0.866
|
0.862
|
0.846
|
0.853
|
0.865
|
0.866
|
0.865
|
- “[bal]” indicates training on a 50–50 balanced dataset (upsampling)
- Bold values indicate the highest values of the Macro-F1 and Weighted-F1 for each category of classification method considered