Skip to main content

Advertisement

Log in

Deformation modeling based on mechanical properties of liver tissue for virtuanormal vectors of trianglesl surgical simulation

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

A Correction to this article was published on 17 April 2021

This article has been updated

Abstract

Purpose

In this paper, a method for rapidly constructing a virtual surgical simulation system is proposed. A deformation model based on the mechanical properties of the liver and a rapid collision detection between the surgical micro-instruments and the liver tissue are included in this method. The purpose of this work is to improve the accuracy and real time of particle model deformation interaction in virtual surgery system.

Methods

Firstly, a finite element model is established based on the constitutive model parameters of liver tissue. According to the simulation results, a mathematical model of node displacement is established. Secondly, the virtual liver is established based on the fast model reconstruction method, and the virtual manipulator is controlled by Geomagic Touch manipulator. Based on the hybrid bounding box, a rapid collision detection process between the instrument and liver is realized and the proposed deformation method is used to simulate the deformation of liver tissue.

Results

The simulation and experiment results show that the proposed deformation model can achieve high deformation interaction accuracy. The collision detection algorithm based on the hybrid bounding boxes can realize the collision between the liver and the instrument, and the established virtual surgical simulation system can simulate the liver tissue deformation in the case of small loading displacement.

Conclusions

The effectiveness of the collision detection algorithm and deformation model was verified by an established virtual surgery simulation system. The proposed rapid construction method of virtual surgical simulation is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Change history

References

  1. Ziqiang Ni, Tianmiao Wang, Da Liu (2015) Survey on medical robotics. J Mech Eng 51(13):45–52. https://doi.org/10.3901/jme.2015.13.045

    Article  Google Scholar 

  2. Wang W, Li JM, Wang SX, Su H, Jiang XM (2016) System design and animal experiment study of a novel minimally invasive surgical robot. Int J Med Robot Comput Assist Surg 12:73–84. https://doi.org/10.1002/rcs.1658

    Article  Google Scholar 

  3. Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D (2018) Review of emerging surgical robotic technology. Surg Endosc 32(4):1636–1655. https://doi.org/10.1007/s00464-018-6079-2

    Article  PubMed  Google Scholar 

  4. Wang ZY, Zi B, Wang DM, Qian J, You W, Yu LT (2019) External force self-sensing based on cable-tension disturbance observer for surgical robot end-effector. IEEE Sens J 19(13):5274–5284. https://doi.org/10.1109/jsen.2019.2903776

    Article  Google Scholar 

  5. Shinichiro Yamada, Shimada Mitsuo, Imura Satoru, Morine Yuji, Tetsuya Ikemoto Yu, Saito Chie Takasu, Yoshikawa Masato, Teraoku Hiroki, Yoshimoto Toshiaki, Takata Atsushi (2016) Effective stepwise training and procedure standardization for young surgeons to perform laparoscopic left hepatectomy. Surg Endosc 31(6):2623–2629. https://doi.org/10.1007/s00464-016-5273-3

    Article  Google Scholar 

  6. Basdogan C, Sedef M, Harders M, Wesarg S (2007) VR-based simulators for training in minimally invasive surgery. IEEE Comput Graphics Appl 27(2):54–66. https://doi.org/10.1109/mcg.2007.51

    Article  Google Scholar 

  7. Guedes HG, Ferreira ZMCC, Leão LRD, Souza Montero EF, Otoch JP, Artifon ELA (2019) Virtual reality simulator versus box-trainer to teach minimally invasive procedures: a meta-analysis. Int J Surg 61:60–68. https://doi.org/10.1016/j.ijsu.2018.12.001

    Article  PubMed  Google Scholar 

  8. Mohammadreza Faieghi O, Tutunea-Fatan Remus, Eagleson Roy (2020) Parallelized collision detection with applications in virtual bone machining. Comput Methods Programs Biomed 188:105263. https://doi.org/10.1016/j.cmpb.2019.105263

    Article  PubMed  Google Scholar 

  9. ElBadrawy Asma A, Hemayed Elsayed E, Fayek Magda B (2012) Rapid collision detection for deformable objects using inclusion-fields applied to cloth simulation. J Adv Res 3(3):245–252. https://doi.org/10.1016/j.jare.2011.07.006

    Article  Google Scholar 

  10. Xie K, Yang J, Zhu YM (2007) Fast collision detection based on nose augmentation virtual surgery. Comput Methods Programs Biomed 88(1):1–7. https://doi.org/10.1016/j.cmpb.2007.06.004

    Article  PubMed  Google Scholar 

  11. Wang Y, Hu Y, Fan J, Zhang Y, Zhang Q (2012) Collision detection based on bounding box for NC machining simulation. Phys Procedia 24:247–252. https://doi.org/10.1016/j.phpro.2012.02.037

    Article  CAS  Google Scholar 

  12. Camara M, Mayer E, Darzi A, Pratt P (2016) Soft tissue deformation for surgical simulation: a position-based dynamics approach. Int J Comput Assist Radiol Surg 11(6):919–928. https://doi.org/10.1007/s11548-016-1373-8

    Article  PubMed  PubMed Central  Google Scholar 

  13. Luo M, Xie H, Xie L, Cai P, Gu LX (2014) A robust and real-time vascular intervention simulation based on Kirchhoff elastic rod. Comput Med Imaging Graph 38(8):735–743. https://doi.org/10.1016/j.compmedimag.2014.08.002

    Article  PubMed  Google Scholar 

  14. Zhou JY, Luo Z, Li CQ, Deng M (2018) Real-time deformation of human soft tissues: a radial basis meshless 3D model based on Marquardt’s algorithm. Comput Methods Programs Biomed 153:237–252. https://doi.org/10.1016/j.cmpb.2017.09.008

    Article  PubMed  Google Scholar 

  15. Zhang JN, Zhong YM, Gu CF (2017) Energy balance method for modelling of soft tissue deformation. Comput Aided Des 93:15–25. https://doi.org/10.1016/j.cad.2017.07.006

    Article  Google Scholar 

  16. Tonutti M, Gras G, Yang GZ (2017) A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery. Artif Intell Med 80:39–47. https://doi.org/10.1016/j.artmed.2017.07.004

    Article  PubMed  Google Scholar 

  17. Zou YN, Liu PX (2017) A high-resolution model for soft tissue deformation based on point primitives. Comput Methods Programs Biomed 148:113–121. https://doi.org/10.1016/j.cmpb.2017.06.013

    Article  PubMed  Google Scholar 

  18. Zhang GM, Xia JJ, Liebschner M, Zhang XY, Daeseung K, Zhou XB (2016) Improved Rubin–Bodner model for the prediction of soft tissue deformations. Med Eng Phys 38(11):1369–1375. https://doi.org/10.1016/j.medengphy.2016.09.008

    Article  PubMed  PubMed Central  Google Scholar 

  19. Peterlík I, Courtecuisse H, Rohling R, Abolmaesumi P, Nguan C, Stéphane Cotin, Salcudean S (2018) Fast elastic registration of soft tissues under large deformations. Med Image Anal 45:24–40. https://doi.org/10.1016/j.media.2017.12.006

    Article  PubMed  Google Scholar 

  20. Zhang J, Zhong Y, Smith J, Gu C (2016) A new ChainMail approach for real-time soft tissue simulation. Bioengineered 7(4):246–252. https://doi.org/10.1080/21655979.2016.1197634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rodríguez A, Leon A, Arroyo G (2016) Parallel deformation of heterogeneous ChainMail models: Application to interactive deformation of large medical volumes. Comput Biol Med 79:222–232. https://doi.org/10.1016/j.compbiomed.2016.10.012

    Article  PubMed  Google Scholar 

  22. Suzuki S, Suzuki N, Hattori A, Uchiyama A, Kobayashi S (2004) Sphere-filled organ model for virtual surgery system. IEEE Trans Med Imaging 23(6):714–722. https://doi.org/10.1109/tmi.2004.826947

    Article  PubMed  Google Scholar 

  23. Vidal FP, Villard PF, Lutton E (2012) Tuning of patient-specific deformable models using an adaptive evolutionary optimization strategy. IEEE Trans Biomed Eng 59(10):2942–2949. https://doi.org/10.1109/tbme.2012.2213251

    Article  PubMed  Google Scholar 

  24. Xu S, Liu XP, Zhang H, Hu L (2011) A nonlinear viscoelastic tensor-mass visual model for surgery simulation. IEEE Trans Instrum Meas 60(1):14–20. https://doi.org/10.1109/TIM.2010.2065450

    Article  Google Scholar 

  25. Joldes GR, Wittek A, Miller K (2008) An efficient hourglass control implementation for the uniform strain hexahedron using the Total Lagrangian formulation. Commun Numer Methods Eng 24(11):1315–1323. https://doi.org/10.1002/cnm.1034

    Article  Google Scholar 

  26. Liu XP, Xu S, Zhang H, Hu L (2011) A new hybrid soft tissue model for visio-haptic simulation. IEEE Trans Instrum Meas 60(99):3570–3581. https://doi.org/10.1109/tim.2011.2161142

    Article  Google Scholar 

  27. Jahya A, Herink M, Misra S (2013) A framework for predicting three-dimensional prostate deformation in real time. Int J Med Robot Comput Assist Surg 9(4):e52–e60. https://doi.org/10.1002/rcs.1493

    Article  Google Scholar 

  28. Mönch Jeanette, Mühler Konrad, Hansen Christian, Oldhafer Karl-Jürgen, Stavrou Gregor, Hillert Christian, Logge Christoph, Preim Bernhard (2013) The LiverSurgeryTrainer: training of computer-based planning in liver resection surgery. Int J Comput Assist Radiol Surg 8:809–818. https://doi.org/10.1007/s11548-013-0812-z

    Article  PubMed  Google Scholar 

  29. Pellicer-Valero OJ, Rupérez María José, Martínez-Sanchis Sandra, Martín-Guerrero José D (2020) Real-time biomechanical modeling of the liver using machine learning models trained on finite element method simulations. Expert Syst Appl 143:113083. https://doi.org/10.1016/j.eswa.2019.113083

    Article  Google Scholar 

  30. Mattei GioGiorgio, Ahluwalia Arti (2016) Sample, testing and analysis variables affecting liver mechanical properties: a review. Acta Biomater 45:60–71. https://doi.org/10.1016/j.actbio.2016.08.055

    Article  PubMed  Google Scholar 

  31. Karimi A, Shojaei A (2018) An experimental study to measure the mechanical properties of the human liver. Dig Dis-eases 36:150–155. https://doi.org/10.1159/000481344

    Article  Google Scholar 

  32. Yang J, Yu L, Wang L, Wang W, Cui J (2018) The estimation method of Friction in unconfined compression tests of soft tissue. Proc Inst Mech Eng [H] 232(6):573–587. https://doi.org/10.1177/0954411918774377

    Article  Google Scholar 

  33. Lingtao Yu, Tao Wang, Huajian Song, Zhengyu Wang, Baoyu Zhang (2014) An optimization algorithm of collision detection applied to virtual surgery. J Harbin Eng Univ 35(9):1164–1170. https://doi.org/10.3969/j.issn.1006-7043.201302019

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Henan Provincial People’s Hospital.

Funding

This work was supported by the National Key Research and Development Plan Project under Grant No. 2018YFB1308100, Zhejiang Provincial Natural Science Foundation under Grant LQ21F020026, Science Foundation of Zhejiang Sci-Tech University (ZSTU) under Grant No. 19022104-Y, General Scientific Research Project of Zhejiang Provincial Department of Education under Grant Nos.19020038-F and 19020033-F, and the National Natural Science Foundation of China under Grant Nos. 51805488 and 51375458.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Hu, M., Shi, X. et al. Deformation modeling based on mechanical properties of liver tissue for virtuanormal vectors of trianglesl surgical simulation. Int J CARS 16, 253–267 (2021). https://doi.org/10.1007/s11548-020-02297-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-020-02297-7

Keywords

Navigation