Skip to main content

Improving detection of prostate cancer foci via information fusion of MRI and temporal enhanced ultrasound

Abstract

Purpose

The detection of clinically significant prostate cancer (PCa) is shown to greatly benefit from MRI–ultrasound fusion biopsy, which involves overlaying pre-biopsy MRI volumes (or targets) with real-time ultrasound images. In previous literature, machine learning models trained on either MRI or ultrasound data have been proposed to improve biopsy guidance and PCa detection. However, quantitative fusion of information from MRI and ultrasound has not been explored in depth in a large study. This paper investigates information fusion approaches between MRI and ultrasound to improve targeting of PCa foci in biopsies.

Methods

We build models of fully convolutional networks (FCN) using data from a newly proposed ultrasound modality, temporal enhanced ultrasound (TeUS), and apparent diffusion coefficient (ADC) from 107 patients with 145 biopsy cores. The architecture of our models is based on U-Net and U-Net with attention gates. Models are built using joint training through intermediate and late fusion of the data. We also build models with data from each modality, separately, to use as baseline. The performance is evaluated based on the area under the curve (AUC) for predicting clinically significant PCa.

Results

Using our proposed deep learning framework and intermediate fusion, integration of TeUS and ADC outperforms the individual modalities for cancer detection. We achieve an AUC of 0.76 for detection of all PCa foci, and 0.89 for PCa with larger foci. Results indicate a shared representation between multiple modalities outperforms the average unimodal predictions.

Conclusion

We demonstrate the significant potential of multimodality integration of information from MRI and TeUS to improve PCa detection, which is essential for accurate targeting of cancer foci during biopsy. By using FCNs as the architecture of choice, we are able to predict the presence of clinically significant PCa in entire imaging planes immediately, without the need for region-based analysis. This reduces the overall computational time and enables future intra-operative deployment of this technology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Ahmed HU, Bosaily AES, Brown LC, Gabe R, Kaplan R, Parmar MK, Collaco-Moraes Y, Ward K, Hindley RG, Freeman A, Kirkham AP, Oldroyd R, Parker C, Emberton M (2017) Diagnostic accuracy of multi-parametric mri and trus biopsy in prostate cancer PROMIS: a paired validating confirmatory study. Lancet 389(10071):815–822

    Article  Google Scholar 

  2. 2.

    Azizi S, Bayat S, Yan P, Tahmasebi AM, Nir G, Kwak JT, Xu S, Wilson S, Iczkowski KA, Lucia MS, Goldenberg L, Salcudean SE, Pinto PA, Wood BJ, Abolmaesumi P, Mousavi P (2017) Detection and grading of prostate cancer using temporal enhanced ultrasound: combining deep neural networks and tissue mimicking simulations. Int J Comput Assisted Radiol Surg 12:1293–1305

    Article  Google Scholar 

  3. 3.

    Chen Q, Xu X, Hu S, Li X, Zou Q, Li Y (2017) A transfer learning approach for classification of clinical significant prostate cancers from mpMRI scans. In: Medical imaging 2017: computer-aided diagnosis, vol 10134. International Society for Optics and Photonics, p 101344F

  4. 4.

    Correas JM, Tissier AM, Khairoune A, Khoury G, Eiss D, Hélénon O (2013) Ultrasound elastography of the prostate: state of the art. Diagn Interv Imaging 94(5):551–560

    Article  Google Scholar 

  5. 5.

    Fedorov A, Beichel RR, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti JM, Aylward SR, Miller JV, Pieper S, Kikinis R (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–41

    Article  Google Scholar 

  6. 6.

    Feleppa E, Porter C, Ketterling J, Dasgupta S, Ramachandran S, Sparks D (2007) Recent advances in ultrasonic tissue-type imaging of the prostate. In: André MP et al (eds) Acoustical imaging, vol 28. Springer, Berlin, pp 331–339

    Chapter  Google Scholar 

  7. 7.

    Feleppa EJ, Ketterling JA, Kalisz A, Urban S, Porter CR, Gillespie JW, Schiff PB, Ennis RD, Wuu CS, Fair WR (2001) Advanced ultrasonic tissue-typing and imaging based on radio-frequency spectrum analysis and neural-network classification for guidance of therapy and biopsy procedures. Int Cong Ser 1230:346–351

    Article  Google Scholar 

  8. 8.

    Havaei M, Guizard N, Chapados N, Bengio Y (2016) Hemis: Hetero-modal image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 469–477

  9. 9.

    Imani F, Abolmaesumi P, Gibson E, Khojaste A, Gaed M, Moussa M, Gomez JA, Romagnoli C, Leveridge MJ, Chang SD, Siemens R, Fenster A, Ward AD, Mousavi P (2015) Computer-aided prostate cancer detection using ultrasound RF time series: in vivo feasibility study. IEEE Trans Med Imaging 34:2248–2257

    Article  Google Scholar 

  10. 10.

    Imani F, Ghavidel S, Abolmaesumi P, Khallaghi S, Gibson E, Khojaste A, Gaed M, Moussa M, Gomez JA, Romagnoli C, Cool DW, Bastian-Jordan M, Kassam Z, Siemens DR, Leveridge MJ, Chang SD, Fenster A, Ward AD, Mousavi P (2016) Fusion of multi-parametric MRI and temporal ultrasound for characterization of prostate cancer: in vivo feasibility study. In: Medical imaging 2016: computer-aided diagnosis, vol 9785. International Society for Optics and Photonics, p 97851K

  11. 11.

    Imani F, Ramezani M, Nouranian S, Gibson E, Khojaste A, Gaed M, Moussa M, Gomez JA, Romagnoli C, Leveridge MJ, Chang SD, Fenster A, Siemens R, Ward AD, Mousavi P, Abolmaesumi P (2015) Ultrasound-based characterization of prostate cancer using joint independent component analysis. IEEE Trans Biomed Eng 62:1796–1804

    Article  Google Scholar 

  12. 12.

    Kiraly AP, Nader CA, Tuysuzoglu A, Grimm R, Kiefer B, El-Zehiry N, Kamen A (2017) Deep convolutional encoder-decoders for prostate cancer detection and classification. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 489–497

  13. 13.

    Kuga R, Kanezaki A, Samejima M, Sugano Y, Matsushita Y (2017) Multi-task learning using multi-modal encoder-decoder networks with shared skip connections. In: Proceedings of the IEEE international conference on computer vision, pp 403–411

  14. 14.

    Liu S, Zheng H, Feng Y, Li W (2017) Prostate cancer diagnosis using deep learning with 3D multiparametric mri. In: Medical imaging 2017: computer-aided diagnosis, vol 10134. International Society for Optics and Photonics, p 1013428

  15. 15.

    Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

  16. 16.

    Mehrtash A, Pesteie M, Hetherington J, Behringer PA, Kapur T, Wells III WM, Rohling R, Fedorov A, Abolmaesumi P (2017) Deepinfer: Open-source deep learning deployment toolkit for image-guided therapy. In: Proceedings of SPIE–the international society for optical engineering, vol 10135. NIH Public Access

  17. 17.

    Mehrtash A, Sedghi A, Ghafoorian M, Taghipour M, Tempany CM, Wells WM, Kapur T, Mousavi P, Abolmaesumi P, Fedorov A (2017) Classification of clinical significance of MRI prostate findings using 3D convolutional neural networks. In: SPIE medical imaging. International Society for Optics and Photonics, pp 101342A–101342A–4

  18. 18.

    Moradi M, Abolmaesumi P, Siemens DR, Sauerbrei EE, Boag AH, Mousavi P (2009) Augmenting detection of prostate cancer in transrectal ultrasound images using SVM and RF time series. IEEE Trans Biomed Eng 56(9):2214–2224

    Article  Google Scholar 

  19. 19.

    Nahlawi L, Imani F, Gaed M, Gomez JA, Moussa M, Gibson E, Fenster A, Ward AD, Abolmaesumi P, Mousavi P, Shatkay H (2015) Using hidden markov models to capture temporal aspects of ultrasound data in prostate cancer. In: 2015 IEEE international conference on bioinformatics and biomedicine (BIBM) pp 446–449

  20. 20.

    Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY (2011) Multimodal deep learning. In: Proceedings of the 28th international conference on machine learning (ICML-11), pp 689–696

  21. 21.

    Oktay O, Ferrante E, Kamnitsas K, Heinrich M, Bai W, Caballero J, Cook SA, de Marvao A, Dawes T, O’Regan DP, Kainz B, Glocker B, Rueckert D (2018) Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans Med Imaging 37(2):384–395. https://doi.org/10.1109/TMI.2017.2743464

    Article  PubMed  Google Scholar 

  22. 22.

    Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, others Glocker B, Rueckert D (2018) Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999

  23. 23.

    Puech P, Rouvière O, Renard-Penna R, Villers A, Devos P, Colombel M, Bitker MO, Leroy X, Mege-Lechevallier F, Compérat E, Ouzzane A, Lemaitre L (2013) Prostate cancer diagnosis: multiparametric mr-targeted biopsy with cognitive and transrectal us-mr fusion guidance versus systematic biopsy-prospective multicenter study. Radiology 268(2):461–9

    Article  Google Scholar 

  24. 24.

    Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241

  25. 25.

    Schelb P, Kohl S, Radtke JP, Wiesenfarth M, Kickingereder P, Bickelhaupt S, Kuder TA, Stenzinger A, Hohenfellner M, Schlemmer HP, Maier-Hein KH, Bonekamp D (2019) Classification of cancer at prostate MRI: deep learning versus clinical PI-RADS assessment. Radiology 293(3):607–617

    Article  Google Scholar 

  26. 26.

    Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B, Glocker B, Rueckert D (2019) Attention gated networks: learning to leverage salient regions in medical images. Med Image Anal 53:197–207

    Article  Google Scholar 

  27. 27.

    Sedghi A, Pesteie M, Javadi G, Azizi S, Yan P, Kwak JT, Xu S, Turkbey B, Choyke P, Pinto P, Wood B, Rohling R, Abolmaesumi P, Mousavi P (2019) Deep neural maps for unsupervised visualization of high-grade cancer in prostate biopsies. Int J Comput Assisted Radiol Surg 14(6):1009–1016

    Article  Google Scholar 

  28. 28.

    Siddiqui MM, Rais-Bahrami S, Turkbey B, George AK, Rothwax JT, Shakir NA, Okoro C, Raskolnikov D, Parnes HL, Linehan WM, Merino MJG, Simon RM, Choyke PL, Wood BJ, Pinto PA (2015) Comparison of mr/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 313(4):390–7

    CAS  Article  Google Scholar 

  29. 29.

    Sonn GA, Chang E, Natarajan S, Margolis DJ, Macairan M, Lieu P, Huang J, Dorey FJ, Reiter RE, Marks LS (2014) Value of targeted prostate biopsy using magnetic resonance-ultrasound fusion in men with prior negative biopsy and elevated prostate-specific antigen. Eur Urol 65(4):809–815

    Article  Google Scholar 

  30. 30.

    Tang M, Djelouah A, Perazzi F, Boykov Y, Schroers C (2018) Normalized cut loss for weakly-supervised cnn segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1818–1827

  31. 31.

    Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, Tempany CM, Choyke PL, Cornud F, Margolis DJ, Thoeny HC, Verma S, Barentsz J, Weinreb JC (2019) Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol. 76(3):340–351. https://doi.org/10.1016/j.eururo.2019.02.033

    Article  PubMed  Google Scholar 

  32. 32.

    Valindria VV, Pawlowski N, Rajchl M, Lavdas I, Aboagye EO, Rockall AG, Rueckert D, Glocker B (2018) Multi-modal learning from unpaired images: application to multi-organ segmentation in ct and MRI. In: 2018 IEEE winter conference on applications of computer vision (WACV), pp 547–556. IEEE

  33. 33.

    Yerram NK, Volkin D, Turkbey B, Nix J, Hoang AN, Vourganti S, Gupta GN, Linehan WM, Choyke PL, Wood BJ, Pinto P (2012) Low suspicion lesions on multiparametric magnetic resonance imaging predict for the absence of high-risk prostate cancer. BJU Int 110(11b):E783–E788

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Nvidia Corp. for the donated GPUs.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alireza Sedghi.

Ethics declarations

Conflict of interest

A. Sedghi, A. Mehrtash, A. Jamzad, A. Amalou, W. Wells III, T. Kapur, J.T. Kwak, B. Turkbey, P. Choyke, P. Pinto, B. Wood, S. Xu, P. Abolmaesumi, and P. Mousavi confirm that there are no known conflicts of interest with this publication.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Purang Abolmaesumi and Parvin Mousavi: Joint senior authors.

This work is funded in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) and in part by the Canadian Institutes of Health Research (CIHR).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sedghi, A., Mehrtash, A., Jamzad, A. et al. Improving detection of prostate cancer foci via information fusion of MRI and temporal enhanced ultrasound. Int J CARS 15, 1215–1223 (2020). https://doi.org/10.1007/s11548-020-02172-5

Download citation

Keywords

  • Information fusion
  • Multimodality training
  • Deep learning
  • Prostate cancer detection
  • Image-guided biopsy
  • Temporal enhanced ultrasound
  • Magnetic resonance imaging