Skip to main content
Log in

Pre-clinical evaluation of an image-guided in-situ Raman spectroscopy navigation system for targeted prostate cancer interventions

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Transrectal ultrasound (TRUS) image guidance is the standard of care for diagnostic and therapeutic interventions in prostate cancer (PCa) patients, but can lead to high false-negative rates, compromising downstream effectiveness of therapeutic choices. A promising approach to improve in-situ detection of PCa lies in using the optical properties of the tissue to discern cancer from healthy tissue. In this work, we present the first in-situ image-guided navigation system for a spatially tracked Raman spectroscopy probe integrated in a PCa workflow, capturing the optical tissue fingerprint. The probe is guided with fused TRUS/MR imaging and tested with both tissue-simulating phantoms and ex-vivo prostates. The workflow was designed to be integrated the clinical workflow for trans-perineal prostate biopsies, as well as for high-dose rate (HDR) brachytherapy.

Methods

The proposed system developed in 3D Slicer includes an electromagnetically tracked Raman spectroscopy probe, along with tracked TRUS imaging automatically registered to diagnostic MRI. The proposed system is tested on both custom gelatin tissue-simulating optical phantoms and biological tissue phantoms. A random-forest classifier was then trained on optical spectrums from ex-vivo prostates following prostatectomy using our optical probe. Preliminary in-human results are presented with the Raman spectroscopy instrument to detect malignant tissue in-situ with histopathology confirmation.

Results

In 5 synthetic gelatin and biological tissue phantoms, we demonstrate the ability of the image-guided Raman system by detecting over 95% of lesions, based on biopsy samples. The included lesion volumes ranged from 0.1 to 0.61 cc. We showed the compatibility of our workflow with the current HDR brachytherapy setup. In ex-vivo prostates of PCa patients, the system showed a 81% detection accuracy in high grade lesions.

Conclusion

Pre-clinical experiments demonstrated promising results for in-situ confirmation of lesion locations in prostates using Raman spectroscopy, both in phantoms and human ex-vivo prostate tissue, which is required for integration in HDR brachytherapy procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aubertin K, Desroches J, Jermyn M, Trinh VQ, Saad F, Trudel D, Leblond F (2018) Combining high wavenumber and fingerprint Raman spectroscopy for the detection of prostate cancer during radical prostatectomy. Bio Opt Exp 9(9):4294–4305

    Article  CAS  Google Scholar 

  2. Aubertin K, Trinh VQ, Jermyn M, Baksic P, Grosset AA, Desroches J, St-Arnaud K, Birlea M, Vladoiu MC, Latour M, Albadine R (2018) Mesoscopic characterization of prostate cancer using Raman spectroscopy: potential for diagnostics and therapeutics. BJU international

  3. Azizi S, Imani F, Ghavidel S, Tahmasebi A, Kwak JT, Xu S, Turkbey B, Choyke P, Pinto P, Wood B, Mousavi P (2016) Detection of prostate cancer using temporal sequences of ultrasound data: a large clinical feasibility study. Int J Comput Assist Radiol Surg 11(6):947–956

    Article  PubMed  PubMed Central  Google Scholar 

  4. Azizi S, Van Woudenberg N, Sojoudi S, Li M, Xu S, Anas EMA, Yan P, Tahmasebi A, Kwak JT, Turkbey B, Choyke P (2018) Toward a real-time system for temporal enhanced ultrasound-guided prostate biopsy. Int J Comput Assist Radiol Surg 13(8):1201–1209

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bjurlin MA, Wysock JS, Taneja SS (2014) Optimization of prostate biopsy: review of technique and complications. Urol Clin NA 41(2):299–313

    Article  Google Scholar 

  6. Bratchenko IA, Artemyev DN, Myakinin OO, Khristoforova YA, Moryatov AA, Kozlov SV, Zakharov VP (2017) Combined Raman and autofluorescence ex vivo diagnostics of skin cancer in near-infrared and visible regions. J Biomed Opt 22(2):027005

    Article  Google Scholar 

  7. Cloyd KL, El-Hamamsy I, Boonrungsiman S, Hedegaard M, Gentleman E, Sarathchandra P, Colazzo F, Gentleman MM, Yacoub MH, Chester AH (2012) Characterization of porcine aortic valvular interstitial cell calcified nodules. PLoS One 7(10):e48154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Desroches J, Jermyn M, Pinto M, Picot F, Tremblay MA, Obaid S, Marple E, Urmey K, Trudel D, Soulez G, Leblond F (2018) A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy. Sci Rep 8(1):1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Desroches J, Lemoine É, Pinto M, Marple E, Urmey K, Diaz R, Guiot MC, Wilson BC, Petrecca K, Leblond F (2019) Development and first in-human use of a Raman spectroscopy guidance system integrated with a brain biopsy needle. J Biophoton 12(3):e201800396

    Article  CAS  Google Scholar 

  10. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3d slicer as an image computing platform for the quantitative imaging network. Magn Reson Imag 30(9):1323–1341

    Article  Google Scholar 

  11. Grosset AA, Dallaire F, Birlea M, Daoust F, Roy N, Kougioumoutzakis A, Azzi F, Aubertin K, Kadoury S, Saad F, Hovington H, Bergeron AA, Fradet Y, Tetu B, Leblond F, Trudel D (2020) Integration of raman micro-spectroscopy to the clinical workflow: a multicenter cohort study for intraductal carcinoma of the prostate diagnosis. under revision to PLoS Medicine

  12. Hwang SI, Lee HJ, Lee SE, Hong SK, Byun SS, Lee SC, Choe G (2019) Value of MR-US fusion in guidance of repeated prostate biopsy in men with PSA 10 ng/mL. Clin Imag 53:1–5

    Article  Google Scholar 

  13. Jermyn M, Mercier J, Aubertin K, Desroches J, Urmey K, Karamchandiani J, Marple E, Guiot MC, Leblond F, Petrecca K (2017) Highly accurate detection of cancer in situ with intraoperative, label-free, multimodal optical spectroscopy. Cancer Res 77(14):3942–3950

    Article  CAS  PubMed  Google Scholar 

  14. Jermyn M, Mok K, Mercier J, Desroches J, Pichette J, Saint-Arnaud K, Bernstein L, Guiot MC, Petrecca K, Leblond F (2015) Intraoperative brain cancer detection with raman spectroscopy in humans. Sci Transl Med 7(274):274–79

    Article  CAS  Google Scholar 

  15. Kadoury S, Yan P, Xu S, Glossop N, Choyke P, Turkbey B, Pinto P, Wood BJ, Kruecker J (2010) Realtime TRUS/MRI fusion targeted-biopsy for prostate cancer: a clinical demonstration of increased positive biopsy rates. In: International workshop on prostate cancer imaging, Springer, pp 52–62

  16. Kleis S, Sanchez L (1991) Dependence of sound velocity on salinity and temperature in saline solutions. Solar Energy 46(6):371–375

    Article  CAS  Google Scholar 

  17. Konyalioglu E, Tarhan H, Cakmak O, Pala EE, Zorlu F (2015) Prostate cancer volume estimations based on transrectal ultrasonography-guided biopsy in order to predict clinically significant prostate cancer. Int Braz J Urol 41(3):442–448

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lasso A, Heffter T, Rankin A, Pinter C, Ungi T, Fichtinger G (2014) Plus: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng 61(10):2527–2537

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lasso A, Heffter T, Rankin A, Pinter C, Ungi T, Fichtinger G (2014) Plus: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng 10:2527–2537

    Article  Google Scholar 

  20. Ménard C, Iupati D, Publicover J, Lee J, Abed J, O’Leary G, Simeonov A, Foltz WD, Milosevic M, Catton C, Jaffray D, Chung P, Brock K, Haider M (2014) MR-guided prostate biopsy for planning of focal salvage after radiation therapy. Radiology 274(1):181–191

    Article  PubMed  Google Scholar 

  21. Motz JT, Fitzmaurice M, Miller A, Gandhi SJ, Haka AS, Galindo L, Dasari RR, Kramer JR, Feld MS (2006) In vivo raman spectral pathology of human atherosclerosis and vulnerable plaque. J Biomed Opt 11(2):021003

    Article  PubMed  Google Scholar 

  22. Mousavi SR, Rivaz H, Czarnota GJ, Samani A, Sadeghi-Naini A (2017) Ultrasound elastography of the prostate using an unconstrained modulus reconstruction technique: a pilot clinical study. Transl Oncol 10(5):744–751

    Article  PubMed  PubMed Central  Google Scholar 

  23. Natarajan S, Marks LS, Margolis DJ, Huang J, Macairan ML, Lieu P, Fenster A (2011) Clinical application of a 3d ultrasound-guided prostate biopsy system. In: Urologic oncology: seminars and original investigations, Elsevier, vol 29, pp 334–342

  24. Pfeiffer D, Sutlief S, Feng W, Pierce HM, Kofler J (2008) Aapm task group 128: quality assurance tests for prostate brachytherapy ultrasound systems. Med Phys 35(12):5471–5489

    Article  PubMed  Google Scholar 

  25. Pinto M, Zorn KC, Tremblay JP, Desroches J, Dallaire F, Aubertin K, Marple ET, Kent C, Leblond F, Trudel D, Lessage F (2019) Integration of a raman spectroscopy system to a robotic-assisted surgical system for real-time tissue characterization during radical prostatectomy procedures. J Biomed Opt 24(2):025001

    Article  CAS  PubMed Central  Google Scholar 

  26. Roethke M, Anastasiadis AG, Lichy M, Werner M, Wagner P, Kruck S, Claussen CD, Stenzl A, Schlemmer HP, Schilling D (2012) MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy. World J Urol 30(2):213–218

    Article  CAS  PubMed  Google Scholar 

  27. Ryzhikova E, Kazakov O, Halamkova L, Celmins D, Malone P, Molho E, Zimmerman EA, Lednev IK (2015) Raman spectroscopy of blood serum for alzheimer’s disease diagnostics: specificity relative to other types of dementia. J Biophoton 8(7):584–596

    Article  Google Scholar 

  28. Sabtu SN, Abdul Sani SF, Bradley DA, Looi LM, Osman Z (2020) A review of the applications of Raman spectroscopy for breast cancer tissue diagnostic and their histopathological classification of epithelial to mesenchymal transition. J Raman Spectrosc 51:380–389

    Article  CAS  Google Scholar 

  29. Sedghi A, Pesteie M, Javadi G (2019) Deep neural maps for unsupervised visualization of high-grade cancer in prostate biopsies. Int J Comput Assist Radiol Surg 14(6):1009–1016

    Article  PubMed  Google Scholar 

  30. Selmi SY, Promayon E, Troccaz J (2018) Hybrid 2D–3D ultrasound registration for navigated prostate biopsy. Int J Comput Assist Radiol Surg 13(7):987–995

    Article  PubMed  Google Scholar 

  31. Shah RB, Zhou M (2012) Prostate needle biopsy sampling techniques: impact on pathological diagnosis, Springer Berlin, pp 11–14

    Google Scholar 

  32. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics. CA A Cancer J Clin 64(1):9–29

    Article  Google Scholar 

  33. Tokuda J, Fischer GS, Papademetris X, Yaniv Z, Ibanez L, Cheng P, Liu H, Blevins J, Arata J, Golby AJ, Kapur T (2009) Openigtlink: an open network protocol for image-guided therapy environment. Int J Med Robot Comput Assist Surg 5(4):423–434

    Article  Google Scholar 

Download references

Funding

This work was funded by an NSERC/CIHR (Grant No. MOP-89921) collaborative health research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Kadoury.

Ethics declarations

Conflict of interest

The authors have no conflict of interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shams, R., Picot, F., Grajales, D. et al. Pre-clinical evaluation of an image-guided in-situ Raman spectroscopy navigation system for targeted prostate cancer interventions. Int J CARS 15, 867–876 (2020). https://doi.org/10.1007/s11548-020-02136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-020-02136-9

Keywords

Navigation