Abolhassani N, Patel R, Moallem M (2007) Needle insertion into soft tissue: a survey. Med Eng Phys 29(4):413–431
Article
Google Scholar
Apnorton: green’s theorem and area of polygons. https://math.blogoverflow.com/2014/06/04/greens-theorem-and-area-of-polygons
Beigi P, Rohling R, Salcudean SE, Ng GC (2017) Casper: computer-aided segmentation of imperceptible motion—a learning-based tracking of an invisible needle in ultrasound. Int J Comput Assist Radiol Surg 12(11):1857–1866
Article
Google Scholar
Board HP (2018) Singapore renal registry annual report 2016
Bradski G (2000) The OpenCV library. Dr. Dobb’s J Softw Tools 25:120–125
Google Scholar
Chaurasia A, Culurciello E (2017) Linknet: exploiting encoder representations for efficient semantic segmentation. CoRR http://arxiv.org/abs/1707.03718
Chen LC, Papandreou G, Schroff F, Adam H (2017) Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587
Fitzgibbon AW, Fisher RB (1996) A buyer’s guide to conic fitting. DAI Research paper
Foley JD, Van FD, Van Dam A, Feiner SK, Hughes JF, Hughes J, Angel E (1996) Computer graphics: principles and practice, vol 12110. Addison-Wesley Professional, Boston
Google Scholar
Hamper UM, Savader BL, Sheth S (1991) Improved needle-tip visualization by color doppler sonography. AJR Am J Roentgenol 156(2):401–402
CAS
Article
Google Scholar
Hatt CR, Ng G, Parthasarathy V (2015) Enhanced needle localization in ultrasound using beam steering and learning-based segmentation. Comput Med Imaging Graph 41:46–54
Article
Google Scholar
He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. CoRR http://arxiv.org/abs/1512.03385
Johnson RJ, Feehally J, Floege J (2014) Comprehensive clinical nephrology E-Book. Elsevier Health Sciences, Amsterdam
Google Scholar
Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980
Mathiassen K, Dall’Alba D, Muradore R, Fiorini P, Elle OJ (2016) Robust real-time needle tracking in 2-D ultrasound images using statistical filtering. IEEE Trans Control Syst Technol 25(3):966–978
Article
Google Scholar
Mwikirize C, Nosher JL, Hacihaliloglu I (2018) Convolution neural networks for real-time needle detection and localization in 2D ultrasound. Int J Comput Assist Radiol Surg 13(5):647–657
Article
Google Scholar
Neubach Z, Shoham M (2010) Ultrasound-guided robot for flexible needle steering. IEEE Trans Biomed Eng 57(4):799–805
Article
Google Scholar
Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in PyTorch. In: NIPS 2017 Autodiff workshop: the future of gradient-based machine learning software and techniques. Long Beach, CA, US
Peng C, Zhang X, Yu G, Luo G, Sun J (2017) Large kernel matters—improve semantic segmentation by global convolutional network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4353–4361
Roy AG, Navab N, Wachinger C (2018) Concurrent spatial and channel ‘squeeze & excitation’in fully convolutional networks. In: International conference on medical image computing and computer-assisted intervention, pp 421–429. Springer
Suzuki S, Keiichi B (1985) Topological structural analysis of digitized binary images by border following. Comput Vis Graph Image Process 30(1):32–46
Article
Google Scholar
Teh CH, Chin RT (1989) On the detection of dominant points on digital curves. IEEE Trans Pattern Anal Mach Intell 11(8):859–872
Article
Google Scholar
Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Iccv, vol 98, p 2
Vrooijink GJ, Abayazid M, Misra S (2013) Real-time three-dimensional flexible needle tracking using two-dimensional ultrasound. In: 2013 IEEE international conference on robotics and automation (ICRA), pp 1688–1693. IEEE (2013)
Zhao Y, Cachard C, Liebgott H (2013) Automatic needle detection and tracking in 3D ultrasound using an ROI-based RANSAC and Kalman method. Ultrason Imaging 35(4):283–306
Article
Google Scholar
Zhao Z, Xu S, Wood B, Tse ZTH (2018) An electromagnetic tracking needle clip: an enabling design for low-cost image-guided therapy. In: 2018 Design of medical devices conference. American Society of Mechanical Engineers, , pp V001T07A010–V001T07A010