Design, characterization and optimization of a soft fluidic actuator for minimally invasive surgery

Abstract

Purpose

In minimally invasive surgery and endoscopy, the rise of soft robotics, using materials of similar softness as biological soft tissues, opens many new opportunities. Soft actuated catheters could become an alternative to current steerable catheters, by minimizing the risk of damage to surrounding tissues while enhancing the possibilities to navigate in confined space and to reach remote locations. Fluidic actuators present the advantage to be safe, since they do not require rigid parts nor voltage, to be lightweight, and to allow the reduction of the number of parts needed for a given movement. This work presents the design, development and characterization of a soft fluidic bending actuator for a steerable catheter.

Methods

A silicone prototype of 5 mm diameter has been designed. It has one degree of freedom in bending and achieves a radius of curvature below 10 mm. A numerical model has been developed and compared to the experimental results.

Results

Despite an overestimation of the bending, the numerical model properly captures the behaviour of the actuator. This allowed to identify and validate the key design parameters of the actuator, namely the ratio between the pressure channel surface and the actuator cross-section surface. Based on the results, an optimized design has been developed and numerically implemented. The miniaturization and the potential to carry devices with non-negligible bending stiffness have also been discussed.

Conclusion

In this work, a proof of concept of a soft fluidic actuator for a steerable catheter has been designed, developed and characterized. It showed promising results concerning the feasibility of a miniaturized actuator with two degrees of freedom.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Polygerinos P, Correll N, Morin SA, Mosadegh B, Onal CD, Petersen K, Cianchetti M, Tolley MT, Shepherd RF (2017) Soft robotics: review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human–robot interaction. Adv Eng Mater 19(12):1700016. https://doi.org/10.1002/adem.201700016

    CAS  Article  Google Scholar 

  2. 2.

    Gorissen B, Reynaerts D, Konishi S, Yoshida K, Kim JW, De Volder M (2017) Elastic inflatable actuators for soft robotic applications. Adv Mater 29(43):1604977. https://doi.org/10.1002/adma.201604977

    CAS  Article  Google Scholar 

  3. 3.

    Cianchetti M, Laschi C, Menciassi A, Dario P (2018) Biomedical applications of soft robotics. Nat Rev Mater 3(6):143–153. https://doi.org/10.1038/s41578-018-0022-y

    Article  Google Scholar 

  4. 4.

    Ali A, Plettenburg DH, Breedveld P (2016) Steerable catheters in cardiology: classifying steerability and assessing future challenges. IEEE Trans Biomed Eng 63(4):679–693. https://doi.org/10.1109/TBME.2016.2525785

    Article  PubMed  Google Scholar 

  5. 5.

    Le HM, Do TN, Phee SJ (2016) A survey on actuators-driven surgical robots. Sens Actuators A Phys 247:323–354

    CAS  Article  Google Scholar 

  6. 6.

    Burgner-Kahrs J, Rucker DC, Choset H (2015) Continuum robots for medical applications: a survey. IEEE Trans Robot 31(6):1261–1280. https://doi.org/10.1109/TRO.2015.2489500

    Article  Google Scholar 

  7. 7.

    Blanc L, Delchambre A, Lambert P (2017) Flexible medical devices: review of controllable stiffness solutions. Actuators. https://doi.org/10.3390/act6030023

    Article  Google Scholar 

  8. 8.

    Hines L, Petersen K, Lum GZ, Sitti M (2017) Soft actuators for small-scale robotics. Adv Mater 29(13):1603483. https://doi.org/10.1002/adma.201603483

    CAS  Article  Google Scholar 

  9. 9.

    De Greef A, Lambert P, Delchambre A (2009) Towards flexible medical instruments: review of flexible fluidic actuators. Precis Eng 33(4):311–321

    Article  Google Scholar 

  10. 10.

    Suzumori K (1989) Flexible microactuator. Trans Jpn Soc Mech Eng Ser C 55(518):2547–2552

    Article  Google Scholar 

  11. 11.

    Wakimoto S, Suzumori K, Ogura K (2011) Miniature pneumatic curling rubber actuator generating bidirectional motion with one air-supply tube. Adv Robot 25(9–10):1311–1330. https://doi.org/10.1163/016918611X574731

    Article  Google Scholar 

  12. 12.

    Inoue Y, Ikuta K (2016) Hydraulic driven active catheters with optical bending sensor. In: 2016 IEEE 29th international conference on micro electro mechanical systems (MEMS), pp 383–386. https://doi.org/10.1109/MEMSYS.2016.7421641

  13. 13.

    Gerboni G, Ranzani T, Diodato A, Ciuti G, Cianchetti M, Menciassi A (2015) Modular soft mechatronic manipulator for minimally invasive surgery (mis): overall architecture and development of a fully integrated soft module. Meccanica 50(11):2865–2878. https://doi.org/10.1007/s11012-015-0267-0

    Article  Google Scholar 

  14. 14.

    Elsayed Y, Vincensi A, Lekakou C, Geng T, Saaj CM, Ranzani T, Cianchetti M, Menciassi A (2014) Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications. Soft Robot 1(4):255–262. https://doi.org/10.1089/soro.2014.0016

    Article  Google Scholar 

  15. 15.

    Gorissen B, De Volder M, Reynaerts D (2018) Chip-on-tip endoscope incorporating a soft robotic pneumatic bending microactuator. Biomed Microdevices 20(3):73. https://doi.org/10.1007/s10544-018-0317-1

    Article  PubMed  Google Scholar 

  16. 16.

    Fraś J, Czarnowski J, Maciaś M, Główka J, Cianchetti M, Menciassi A (2015) New stiff-flop module construction idea for improved actuation and sensing. In: 2015 IEEE international conference on robotics and automation (ICRA), pp 2901–2906. https://doi.org/10.1109/ICRA.2015.7139595

  17. 17.

    Abidi H, Gerboni G, Brancadoro M, Fras J, Diodato A, Cianchetti M, Wurdemann H, Althoefer K, Menciassi A (2018) Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery. Int J Med Robot Comput Assist Surg 14(1):e1875. https://doi.org/10.1002/rcs.1875

    Article  Google Scholar 

  18. 18.

    Sun Y, Song S, Liang X, Ren H (2016) A miniature soft robotic manipulator based on novel fabrication methods. IEEE Robot Autom Lett 1(2):617–623. https://doi.org/10.1109/LRA.2016.2521889

    Article  Google Scholar 

  19. 19.

    Arezzo A, Mintz Y, Allaix ME, Arolfo S, Bonino M, Gerboni G, Brancadoro M, Cianchetti M, Menciassi A, Wurdemann H, Noh Y, Althoefer K, Fras J, Glowka J, Nawrat Z, Cassidy G, Walker R, Morino M (2017) Total mesorectal excision using a soft and flexible robotic arm: a feasibility study in cadaver models. Surg Endosc 31(1):264–273. https://doi.org/10.1007/s00464-016-4967-x

    Article  PubMed  Google Scholar 

  20. 20.

    Wang Z, Polygerinos P, Overvelde JTB, Galloway KC, Bertoldi K, Walsh CJ (2017) Interaction forces of soft fiber reinforced bending actuators. IEEE/ASME Trans Mechatron 22(2):717–727. https://doi.org/10.1109/TMECH.2016.2638468

    Article  Google Scholar 

  21. 21.

    Polygerinos P, Wang Z, Overvelde JTB, Galloway KC, Wood RJ, Bertoldi K, Walsh CJ (2015) Modeling of soft fiber-reinforced bending actuators. IEEE Trans Robot 31(3):778–789. https://doi.org/10.1109/TRO.2015.2428504

    Article  Google Scholar 

  22. 22.

    Yeoh OH (1993) Some forms of the strain energy function for rubber. Rubber Chem Technol 66(5):754–771. https://doi.org/10.5254/1.3538343

    CAS  Article  Google Scholar 

  23. 23.

    Kulkarni P (2015) Centrifugal forming and mechanical properties of silicone-based elastomers for soft robotic actuators. Ph.D. thesis, New Brunswick

  24. 24.

    Steck D, Qu J, Kordmahale SB, Tscharnuter D, Muliana A, Kameoka J (2019) Mechanical responses of ecoflex silicone rubber: compressible and incompressible behaviors. J Appl Polym Sci 136(5):47025. https://doi.org/10.1002/app.47025

    CAS  Article  Google Scholar 

  25. 25.

    Garriga-Casanovas A, Collison I, Rodriguez y Baena F (2018) Toward a common framework for the design of soft robotic manipulators with fluidic actuation. Soft Robot 5(5):622–649. https://doi.org/10.1089/soro.2017.0105 (pMID: 30161015)

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Shiva A, Stilli A, Noh Y, Faragasso A, Falco ID, Gerboni G, Cianchetti M, Menciassi A, Althoefer K, Wurdemann HA (2016) Tendon-based stiffening for a pneumatically actuated soft manipulator. IEEE Robot Autom Lett 1(2):632–637. https://doi.org/10.1109/LRA.2016.2523120

    Article  Google Scholar 

Download references

Acknowledgements

This work was made possible by the support of Boston Scientific and the Michel Cremer Foundation. This work is also supported by the FNRS (Fonds National de la Recherche Scientifique) through the funding of a FRIA Grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gilles Decroly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain patient data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Decroly, G., Mertens, B., Lambert, P. et al. Design, characterization and optimization of a soft fluidic actuator for minimally invasive surgery. Int J CARS 15, 333–340 (2020). https://doi.org/10.1007/s11548-019-02081-2

Download citation

Keywords

  • Soft robotics
  • Fluidic actuator
  • Steerable catheter
  • Minimally invasive surgery
  • Finite element modelling