Robust GPU-based virtual reality simulation of radio-frequency ablations for various needle geometries and locations



Radio-frequency ablations play an important role in the therapy of malignant liver lesions. The navigation of a needle to the lesion poses a challenge for both the trainees and intervening physicians.


This publication presents a new GPU-based, accurate method for the simulation of radio-frequency ablations for lesions at the needle tip in general and for an existing visuo-haptic 4D VR simulator. The method is implemented real time capable with Nvidia CUDA.


It performs better than a literature method concerning the theoretical characteristic of monotonic convergence of the bioheat PDE and a in vitro gold standard with significant improvements (\(p<0.05\)) in terms of Pearson correlations. It shows no failure modes or theoretically inconsistent individual simulation results after the initial phase of 10 s. On the Nvidia 1080 Ti GPU, it achieves a very high frame rendering performance of > 480 Hz.


Our method provides a more robust and safer real-time ablation planning and intraoperative guidance technique, especially avoiding the overestimation of the ablated tissue death zone, which is risky for the patient in terms of tumor recurrence. Future in vitro measurements and optimization shall further improve the conservative estimate.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

  2. 2.


  1. 1.

    Benzinger TH (1969) Heat regulation: homeostasis of central temperature in man. Physiol Rev 49(4):671–759

    CAS  Article  Google Scholar 

  2. 2.

    Chen YH, Lin H, Xie CL, Zhang XT, Li YG (2015) Efficacy comparison between cryoablation and radiofrequency ablation for patients with cavotricuspid valve isthmus dependent atrial flutter: a meta-analysis. Sci Rep 5:10910

    CAS  Article  Google Scholar 

  3. 3.

    Curley S (2003) Radiofrequency ablation of malignant liver tumors. Ann Surg Oncol 10(4):338–347

    Article  Google Scholar 

  4. 4.

    Evans G, Blackledge J, Yardley P (2012) Numerical methods for partial differential equations. Springer, Berlin

    Google Scholar 

  5. 5.

    Fortmeier D, Mastmeyer A, Handels H (2012) GPU-based visualization of deformable volumetric soft-tissue for real-time simulation of haptic needle insertion. In: Tolxdorff T, Deserno M, Handels H, Meinzer HP (eds) Bildverarbeitung für die Medizin 2012. Springer, Berlin, pp 117–122

    Google Scholar 

  6. 6.

    Fortmeier D, Mastmeyer A, Handels H (2014) An image-based multiproxy palpation algorithm for patient-specific VR-simulation. Stud Health Technol Inf 196:107–113

    Google Scholar 

  7. 7.

    Fortmeier D, Mastmeyer A, Schröder J, Handels H (2016) A virtual reality system for PTCD simulation using direct visuo-haptic rendering of partially segmented image data. IEEE J Biomed Health Inf 20(1):355–366

    Article  Google Scholar 

  8. 8.

    Fortmeier D, Wilms M, Mastmeyer A, Handels H (2015) Direct visuo-haptic 4D volume rendering using respiratory motion models. IEEE Trans Haptics 8(4):371–383

    Article  Google Scholar 

  9. 9.

    Goldberg SN (2002) Comparison of techniques for image-guided ablation of focal liver tumors. Radiology 223(2):304–307

    Article  Google Scholar 

  10. 10.

    Hasgall P, Di Gennaro F, Baumgartner C, Neufeld E, Lloyd B, Gosselin M, Payne D, Klingenböck A, Kuster N (2018) IT’IS Database for thermal and electromagnetic parameters of biological tissues.

  11. 11.

    Izzo F (2003) Other thermal ablation techniques: microwave and interstitial laser ablation of liver tumors. Ann Surg Oncol 10(5):491–497

    Article  Google Scholar 

  12. 12.

    Kuck KH, Brugada J, Fürnkranz A, Metzner A, Ouyang F, Chun KJ, Elvan A, Arentz T, Bestehorn K, Pocock SJ, Albenque JP, Tondo C (2016) Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation. N Engl J Med 374(23):2235–2245

    Article  Google Scholar 

  13. 13.

    Linte C, Camp J, Holmes D, Rettmann M, Packer D, RA R (2013) Toward modeling of radio-frequency ablation lesions for image-guided left atrial fibrillation therapy: model formulation and preliminary evaluation. Stud Health Technol Inf 184(11):261–267

    Google Scholar 

  14. 14.

    Linte CA, Camp JJ, Holmes DR, Rettmann ME, Robb RA (2013) Modeling of radiofrequency ablation lesions for image-guided arrhythmia therapy: a preliminary ex vivo demonstration. In: Linte CA, Chen ECS, Berger MO, Moore JT, Holmes DR (eds) Augmented environments for computer-assisted interventions. Springer, Berlin, pp 22–33

    Google Scholar 

  15. 15.

    Llovet JM, Bruix J (2003) Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology 37(2):429–442

    CAS  Article  Google Scholar 

  16. 16.

    Mastmeyer A, Fortmeier D, Handels H (2012) Direct haptic volume rendering in lumbar puncture simulation. In: Studies in health technology and informatics, vol 173. IOS Press, pp 280–286

  17. 17.

    Mastmeyer A, Fortmeier D, Handels H (2016) Efficient patient modeling for visuo-haptic VR simulation using a generic patient atlas. Comput Methods Prog Biomed 132:161–175

    Article  Google Scholar 

  18. 18.

    Mastmeyer A, Fortmeier D, Handels H (2016) Random forest classification of large volume structures for visuo-haptic rendering in CT images. In: Proceedings of SPIE medical imaging: image processing, vol 9784. International Society for Optics and Photonics, pp 97842H–1–8

  19. 19.

    Mastmeyer A, Fortmeier D, Handels H (2017) Evaluation of direct haptic 4D volume rendering of partially segmented data for liver puncture simulation. Nat Sci Rep 7(1):1–15

    CAS  Article  Google Scholar 

  20. 20.

    Mastmeyer A, Fortmeier D, Maghsoudi E, Simon M, Handels H (2013) Patch-based label fusion using local confidence-measures and weak segmentations. In: Proceedings of SPIE medical imaging: image processing. International Society for Optics and Photonics, Orlando, USA, pp 86691N–1–11

  21. 21.

    Mastmeyer A, Pernelle Guillaume BL, Pieper S, Fortmeier D, Wells S, Handels H, Kapur T (2015) Model-based catheter segmentation in MRI-images. In: International conference on medical image computing and computer-assisted intervention—MICCAI

  22. 22.

    Mastmeyer A, Pernelle G, Ma R, Barber L, Kapur T (2017) Accurate model-based segmentation of gynecologic brachytherapy catheter collections in MRI-images. Med Image Anal 42:173–188

    Article  Google Scholar 

  23. 23.

    Mastmeyer A, Wilms M, Fortmeier D, Schröder J, Handels H (2016) Real-time ultrasound simulation for training of US-guided needle insertion in breathing virtual patients. In: Studies in health technology and informatics, vol 220. IOS Press, pp 219–226

  24. 24.

    Mastmeyer A, Wilms M, Handels H (2017) Interpatient respiratory motion model transfer for virtual reality simulations of liver punctures. J World Soc Comput Graph WSCG 25(1):1–10

    Google Scholar 

  25. 25.

    Mastmeyer A, Wilms M, Handels H (2018) Population-based respiratory 4D motion atlas construction and its application for VR simulations of liver punctures. In: SPIE medical imaging 2018: image processing, vol 10574. International Society for Optics and Photonics, p 1057417

  26. 26.

    Meloni MF, Chiang J, Laeseke PF, Dietrich CF, Sannino A, Solbiati M, Nocerino E, Brace CL, Lee FT Jr (2017) Microwave ablation in primary and secondary liver tumours: technical and clinical approaches. Int J Hyperth 33(1):15–24

    Article  Google Scholar 

  27. 27.

    Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable parallel programming with CUDA. Queue 6(2):40–53

    Article  Google Scholar 

  28. 28.

    Nikfarjam M, Muralidharan V, Christophi C (2005) Mechanisms of focal heat destruction of liver tumors. J Surg Res 127(2):208–223

    Article  Google Scholar 

  29. 29.

    Niu LZ, Li JL, Xu KC (2014) Percutaneous cryoablation for liver cancer. J Clin Transl Hepatol 2(3):182

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Oshowo A, Gillams A, Harrison E, Lees W, Taylor I (2003) Comparison of resection and radiofrequency ablation for treatment of solitary colorectal liver metastases. Br J Surg 90(10):1240–1243

    CAS  Article  Google Scholar 

  31. 31.

    Pennes H (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1(2):93–122

    CAS  Article  Google Scholar 

  32. 32.

    Priem C, Malachowsky C, McIntyre B, Moffat G (1996) Apparatus for selecting frame buffers for display in a double buffered display system. US Patent 5,543,824 (1996)

  33. 33.

    Shen W, Zhang J, Yang F (2005) Modeling and numerical simulation of bioheat transfer and biomechanics in soft tissue. Math Comput Model 41(11–12):1251–1265

    Article  Google Scholar 

  34. 34.

    Werner J, Buse M (1988) Temperature profiles with respect to inhomogeneity and geometry of the human body. J Appl Physiol 65(3):1110–1118

    CAS  Article  Google Scholar 

Download references


Funding was provided by DFG: MA 6791/1-1; Nvidia GPU Grant 2018 (Mastmeyer).

Author information



Corresponding author

Correspondence to Andre Mastmeyer.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kath, N., Handels, H. & Mastmeyer, A. Robust GPU-based virtual reality simulation of radio-frequency ablations for various needle geometries and locations. Int J CARS 14, 1825–1835 (2019).

Download citation


  • Virtual reality simulation
  • Radio-frequency ablation
  • Surgery training
  • Surgery planning
  • Needle interventions