Skip to main content
Log in

Toward real-time rigid registration of intra-operative ultrasound with preoperative CT images for lumbar spinal fusion surgery

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Accurate and effective registration of the vertebrae is crucial for spine surgical navigation procedures. Patient movement, surgical instrumentation or inadvertent contact with the tracked reference during the intervention may invalidate the registration, requiring a rapid correction of the misalignment. In this paper, we present a framework to rigidly align preoperative computed tomography (CT) with the intra-operative ultrasound (iUS) images of a single vertebra.

Methods

We use a single caudo-cranial axial sweep procedure to acquire iUS images, from which the scan trajectory is exploited to initialize the registration transform. To refine the transform, locations of the posterior vertebra surface are first extracted, then used to compute the CT-to-iUS image intensity gradient-based alignment. The approach was validated on a lumbosacral section of a porcine cadaver.

Results

We achieved an overall median accuracy of 1.48 mm (success rate of 84.42%) in \(\sim \) 11 s of computation time, satisfying the clinically accepted accuracy threshold of 2 mm.

Conclusion

Our approach using intra-operative ultrasound to register patient vertebral anatomy to preoperative images matches the clinical needs in terms of accuracy and computation time, facilitating its integration into the surgical workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rajaee SS, Delamarter RB (2012) Spinal fusion in the United States. Spine 37(1):67–76

    Article  Google Scholar 

  2. Bernstein DN, Brodell D, Li Y, Rubery PT, Mesfin A (2017) Impact of the economic downturn on elective lumbar spine surgery in the United States : a national trend analysis, 2003–2013. Glob Spine J 7(3):213–219

    Article  Google Scholar 

  3. Mac-Thiong JM, Parent S, Poitras B, Joncas J, Hubert L (2013) Neurological outcome and management of pedicle screws misplaced totally within the spinal canal. Spine 38(3):229–237

    Article  Google Scholar 

  4. Su AW, Habermann EB, Thomsen KM, Milbrandt TA, Nassr A, Larson AN (2016) Risk factors for 30-day unplanned readmission and major perioperative complications after spine fusion surgery in adults: a review of the National Surgical Quality Improvement Program database. Spine 41(19):1523–1534

    Article  Google Scholar 

  5. Rahmathulla G, Nottmeier EW, Pirris SM, Deen HG, Pichelmann MA (2014) Intraoperative image-guided spinal navigation: technical pitfalls and their avoidance. Neurosurg Focus 36(3):E3

    Article  Google Scholar 

  6. Smith ZA, Sugimoto K, Lawton CD, Fessler RG (2014) Incidence of lumbar spine pedicle breach after percutaneous screw fixation a radiographic evaluation of 601 screws in 151 patients. J Spinal Disord Tech 27(7):358–363

    Article  Google Scholar 

  7. Austin MS, Vaccaro AR, Brislin B, Nachwalter R, Hilibrand AS, Albert TJ (2002) Image-guided spine surgery a cadaver study comparing conventional open laminoforaminotomy and two image-guided techniques for pedicle screw placement in posterolateral fusion and nonfusion models. Spine 27(22):2503–2508

    Article  Google Scholar 

  8. Gebhard F, Weidner A, Liener UC, Stöckle U, Arand M (2004) Navigation at the spine. Injury 35(1, Supplement):35–45

    Article  Google Scholar 

  9. Yan CX, Goulet B, Pelletier J, Chen SJS, Tampieri D, Collins DL (2011) Towards accurate, robust and practical ultrasound-CT registration of vertebrae for image-guided spine surgery. Int J Comput Assist Radiol Surg 6(4):523–537

    Article  Google Scholar 

  10. Arand M, Hartwig E, Kinzl L, Gebhard F (2002) Spinal navigation in tumor surgery of the thoracic spine: first clinical results. Clin Orthop Relat Res 399:211–218

    Article  Google Scholar 

  11. Costa F, Dorelli G, Ortolina A, Cardia A, Attuati L, Tomei M, Milani D, Balzarini L, Galbusera F, Morenghi E, Fornari M (2015) Computed tomography-based image-guided system in spinal surgery state of the art through 10 years of experience. Oper Neurosurg 11(1):59–68

    Google Scholar 

  12. Tabaraee E, Gibson AG, Karahalios DG, Potts EA, Mobasser JP, Burch S (2013) Intraoperative cone beam-computed tomography with navigation (O-ARM) versus conventional fluoroscopy (C-ARM): a cadaveric study comparing accuracy, efficiency, and safety for spinal instrumentation. Spine 38(22):1953–1958

    Article  Google Scholar 

  13. Rampersaud YR, Foley KT, Shen AC, Williams S, Solomito M (2000) Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine 25(20):2637–2645

    Article  CAS  Google Scholar 

  14. Scheufler KM, Franke J, Eckardt A, Dohmen H (2011) Accuracy of image-guided pedicle screw placement using intraoperative computed tomography-based navigation with automated referencing, part I: Cervicothoracic spine. Neurosurgery 69(4):782–795

    Article  Google Scholar 

  15. Quiñones-Hinojosa A, Kolen ER, Jun P, Rosenberg WS, Weinstein PR (2006) Accuracy over space and time of computer-assisted fluoroscopic navigation in the lumbar spine in vivo. Clin Spine Surg 19(2):109–113

    Google Scholar 

  16. Yan CXB, Goulet B, Chen SJS, Tampieri D, Collins DL (2012) Validation of automated ultrasound-CT registration of vertebrae. Int J Comput Assist Radiol Surg 7(4):601–610

    Article  Google Scholar 

  17. Yan CX, Goulet B, Tampieri D, Collins DL (2012) Ultrasound-CT registration of vertebrae without reconstruction. Int J Comput Assist Radiol Surg 7(6):901–909

    Article  Google Scholar 

  18. Koo TK, Kwok WE (2016) Hierarchical CT to ultrasound registration of the lumbar spine: a comparison with other registration methods. Ann Biomed Eng 44(10):2887–2900

    Article  Google Scholar 

  19. Nagpal S, Abolmaesumi P, Rasoulian A, Hacihaliloglu I, Ungi T, Osborn J, Lessoway VA, Rudan J, Jaeger M, Rohling RN, Borschneck DP, Mousavi P (2015) A multi-vertebrae CT to US registration of the lumbar spine in clinical data. Int J Comput Assist Radiol Surg 10(9):1371–1381

    Article  Google Scholar 

  20. Gueziri HE, Collins DL (2019) Fast registration of CT with intra-operative ultrasound images for spine surgery. In: Computational methods and clinical applications for spine imaging. CSI 2018. Lecture notes in computer science, vol 11397. Springer, pp 29–40. https://doi.org/10.1007/978-3-030-13736-6_3

    Google Scholar 

  21. Brendel B, Rick SWA, Stockheim M, Ermert H (2002) Registration of 3D CT and ultrasound datasets of the spine using bone structures. Comput Aided Surg 7(3):146–155

    Article  CAS  Google Scholar 

  22. Winter S, Brendel B, Pechlivanis I, Schmieder K, Igel C (2008) Registration of CT and intraoperative 3-D ultrasound images of the spine using evolutionary and gradient-based methods. IEEE Trans Evolut Comput 12(3):284–296

    Article  Google Scholar 

  23. Gill S, Abolmaesumi P, Fichtinger G, Boisvert J, Pichora D, Borshneck D, Mousavi P (2012) Biomechanically constrained groupwise ultrasound to CT registration of the lumbar spine. Med Image Anal 16(3):662–674

    Article  Google Scholar 

  24. Rasoulian A, Abolmaesumi P, Mousavi P (2012) Feature-based multibody rigid registration of CT and ultrasound images of lumbar spine. Med Phys 39(6):3154–3166

    Article  Google Scholar 

  25. Moghari MH, Abolmaesumi P (2007) Point-based rigid-body registration using an unscented kalman filter. IEEE Trans Med Imaging 26(12):1708–1728

    Article  Google Scholar 

  26. Hacihaliloglu I (2017) Enhancement of bone shadow region using local phase-based ultrasound transmission maps. Int J Comput Assist Radiol Surg 12(6):951–960

    Article  Google Scholar 

  27. Drouin S, Kochanowska A, Kersten-Oertel M, Gerard IJ, Zelmann R, De Nigris D, Bériault S, Arbel T, Sirhan D, Sadikot AF, Hall JA, Sinclair DS, Petrecca K, DelMaestro RF, Collins DL (2017) IBIS: an OR ready open-source platform for image-guided neurosurgery. Int J Comput Assist Radiol Surg 12(3):363–378

    Article  Google Scholar 

  28. De Nigris D, Collins DL, Arbel T (2013) Fast rigid registration of pre-operative magnetic resonance images to intra-operative ultrasound for neurosurgery based on high confidence gradient orientations. Int J Comput Assist Radiol Surg 8(4):649–661

    Article  Google Scholar 

  29. De Nigris D, Collins DL, Arbel T (2012) Multi-modal image registration based on gradient orientations of minimal uncertainty. IEEE Trans Med Imaging 31(12):2343–2354

    Article  Google Scholar 

  30. Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evolut Comput 9(2):159–195

    Article  CAS  Google Scholar 

  31. Cleary K, Anderson J, Brazaitis M, Devey G, DiGioia A, Freedman M, Grönemeyer D, Lathan C, Lemke H, Long D, Mun SK, Taylor R (2000) Final report of the technical requirements for image-guided spine procedures workshop. Comput Aided Surg 5(3):180–215

    CAS  PubMed  Google Scholar 

  32. Kuklo TR, Lenke LG, O’brien MF, Lehman RA Jr, Polly DW Jr, Schroeder TM (2005) Accuracy and efficacy of thoracic pedicle screws in curves more than 90. Spine 30(2):222–226

    Article  Google Scholar 

  33. Guha D, Jakubovic R, Gupta S, Alotaibi NM, Cadotte D, da Costa LB, George R, Heyn C, Howard P, Kapadia A, Klostranec JM, Phan N, Tan G, Mainprize TG, Yee A, Yang VX (2017) Spinal intraoperative three-dimensional navigation: correlation between clinical and absolute engineering accuracy. Spine J 17(4):489–498

    Article  Google Scholar 

Download references

Funding

This study was funded by grants from the Canadian Institutes of Health Research (246067) and from the Natural Sciences and Engineering Research Council of Canada (396395).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houssem-Eddine Gueziri.

Ethics declarations

Conflicts of interest

The authors declared that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animal or human participants performed by any of the authors

Informed consent

This article does not contain patient data

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gueziri, HE., Drouin, S., Yan, C.X.B. et al. Toward real-time rigid registration of intra-operative ultrasound with preoperative CT images for lumbar spinal fusion surgery. Int J CARS 14, 1933–1943 (2019). https://doi.org/10.1007/s11548-019-02020-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-019-02020-1

Keywords

Navigation