Deep neural maps for unsupervised visualization of high-grade cancer in prostate biopsies


Prostate cancer (PCa) is the most frequent noncutaneous cancer in men. Early detection of PCa is essential for clinical decision making, and reducing metastasis and mortality rates. The current approach for PCa diagnosis is histopathologic analysis of core biopsies taken under transrectal ultrasound guidance (TRUS-guided). Both TRUS-guided systematic biopsy and MR-TRUS-guided fusion biopsy have limitations in accurately identifying PCa, intraoperatively. There is a need to augment this process by visualizing highly probable areas of PCa. Temporal enhanced ultrasound (TeUS) has emerged as a promising modality for PCa detection. Prior work focused on supervised classification of PCa verified by gold standard pathology. Pathology labels are noisy, and data from an entire core have a single label even when significantly heterogeneous. Additionally, supervised methods are limited by data from cores with known pathology, and a significant portion of prostate data is discarded without being used. We provide an end-to-end unsupervised solution to map PCa distribution from TeUS data using an innovative representation learning method, deep neural maps. TeUS data are transformed to a topologically arranged hyper-lattice, where similar samples are closer together in the lattice. Therefore, similar regions of malignant and benign tissue in the prostate are clustered together. Our proposed method increases the number of training samples by several orders of magnitude. Data from biopsy cores with known labels are used to associate the clusters with PCa. Cancer probability maps generated using the unsupervised clustering of TeUS data help intuitively visualize the distribution of abnormal tissue for augmenting TRUS-guided biopsies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Polascik TJ, Passoni NM, Villers A, Choyke PL (2014) Modernizing the diagnostic and decision-making pathway for prostate cancer. Clin Cancer Res 20(24):6254–6257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, Mason M, Matveev V, Wiegel T, Zattoni F, Mottet N, European Association of Urology (2014) EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol 65(1):124–137

  3. 3.

    Hodge KK, McNeal JE, Terris MK, Stamey TA (1989) Random systematic versus directed ultrasound guided transrectal core biopsies of the prostate. J Urol 142(1):71–74 (discussion 74–75)

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Eichler K, Hempel S, Wilby J, Myers L, Bachmann LM, Kleijnen J (2006) Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol 175(5):1605–1612

    Article  PubMed  Google Scholar 

  5. 5.

    Siddiqui MM, Rais-Bahrami S, Turkbey B, George AK, Rothwax J, Shakir N, Okoro C, Raskolnikov D, Parnes HL, Linehan WM, Merino MJ, Simon RM, Choyke PL, Wood BJ, Pinto PA (2015) Comparison of MR/ultrasound fusion guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer MR/ultrasound fusion biopsy for prostate cancer MR/ultrasound fusion biopsy for prostate cancer. JAMA 313(4):390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Kuru TH, Roethke MC, Seidenader J, Simpfendörfer T, Boxler S, Alammar K, Rieker P, Popeneciu VI, Roth W, Pahernik S, Schlemmer HP, Hohenfellner M, Hadaschik BA (2013) Critical evaluation of magnetic resonance imaging targeted, transrectal ultrasound guided transperineal fusion biopsy for detection of prostate cancer. J Urol 190(4):1380–1386

    Article  PubMed  Google Scholar 

  7. 7.

    Sonn GA, Chang E, Natarajan S, Margolis DJ, Macairan M, Lieu P, Huang J, Dorey FJ, Reiter RE, Marks LS (2014) Value of targeted prostate biopsy using magnetic resonance-ultrasound fusion in men with prior negative biopsy and elevated prostate-specific antigen. Eur Urol 65(4):809–815

    Article  PubMed  Google Scholar 

  8. 8.

    Natarajan S, Marks LS, Margolis DJA, Huang J, Macairan ML, Lieu P, Fenster A (2011) Clinical application of a 3D ultrasound-guided prostate biopsy system. Urol Oncol 29(3):334–342

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Ahmed HU, Bosaily AES, Brown LC, Gabe R, Kaplan R, Parmar MK, Collaco-Moraes Y, Ward K, Hindley RG, Freeman A, Kirkham AP, Oldroyd R, Parker C, Emberton M (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer PROMIS: a paired validating confirmatory study. Lancet 389(10071):815–822

    Article  PubMed  Google Scholar 

  10. 10.

    Azizi S, Bayat S, Yan P, Tahmasebi A, Nir G, Kwak JT, Xu S, Wilson S, Iczkowski KA, Lucia MS, Goldenberg L, Salcudean SE, Pinto PA, Wood B, Abolmaesumi P, Mousavi P (2017) Detection and grading of prostate cancer using temporal enhanced ultrasound: combining deep neural networks and tissue mimicking simulations. Int J Comput Assist Radiol Surg 12(8):1293–1305

    Article  PubMed  Google Scholar 

  11. 11.

    Feleppa E, Porter C, Ketterling J, Dasgupta S, Ramachandran S, Sparks D (2007) Recent advances in ultrasonic tissue-type imaging of the prostate. In: André MP et al (eds) Acoustical imaging, vol 28. Springer, Berlin, pp 331–339

    Chapter  Google Scholar 

  12. 12.

    Correas JM, Tissier AM, Khairoune A, Khoury G, Eiss D, Hélénon O (2013) Ultrasound elastography of the prostate: state of the art. Diagn Interv Imaging 94(5):551–560

    Article  PubMed  Google Scholar 

  13. 13.

    Imani F, Abolmaesumi P, Gibson E, Khojaste A, Gaed M, Moussa M, Gomez JA, Romagnoli C, Leveridge M, Chang S et al (2015a) Computer-aided prostate cancer detection using ultrasound RF time series: in vivo feasibility study. IEEE Trans Med Imaging 34(11):2248–2257

    Article  PubMed  Google Scholar 

  14. 14.

    Imani F, Zhuang B, Tahmasebi A, Kwak JT, Xu S, Agarwal H, Bharat S, Uniyal N, Turkbey IB, Choyke P et al (2015b) Augmenting MRI-transrectal ultrasound-guided prostate biopsy with temporal ultrasound data: a clinical feasibility study. Int J Comput Assist Radiol Surg 10(6):727–735

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Nahlawi L, Imani F, Gaed M, Gomez JA, Moussa M, Gibson E, Fenster A, Ward AD, Abolmaesumi P, Mousavi P, et al. (2015) Using hidden Markov models to capture temporal aspects of ultrasound data in prostate cancer. In: 2015 IEEE international conference on bioinformatics and biomedicine (BIBM), pp 446–449

  16. 16.

    Moradi M, Abolmaesumi P, Mousavi P (2010) Tissue typing using ultrasound RF time series: experiments with animal tissue samples. Med Phys 37(8):4401–4413

    Article  PubMed  Google Scholar 

  17. 17.

    Azizi S, Imani F, Zhuang B, Tahmasebi A, Kwak JT, Xu S, Uniyal N, Turkbey B, Choyke P, Pinto P et al (2015) Ultrasound-based detection of prostate cancer using automatic feature selection with deep belief networks. In: International conference on medical image computing and computer-assisted intervention, pp 70–77

  18. 18.

    Pesteie M, Abolmaesumi P, Rohling R (2018) Deep neural maps. In: International conference on learning representations.

  19. 19.

    Azizi S, Bayat S, Yan P, Tahmasebi A, Kwak JT, Xu S, Turkbey B, Choyke PL, Pinto PA, Wood BJ, Mousavi P, Abolmaesumi P (2018) Deep recurrent neural networks for prostate cancer detection: analysis of temporal enhanced ultrasound. IEEE Trans Med Imaging 37(12):2695–2703

    Article  PubMed  Google Scholar 

  20. 20.

    Oppenheim AV (1981) Digital signal processing. Technical report. Massachusetts Institute of Technology, Cambridge

  21. 21.

    Azizi S, Imani F, Ghavidel S, Tahmasebi AM, Kwak JT, Xu S, Turkbey B, Choyke PL, Choyke PL, Wood BJ, Mousavi P, Abolmaesumi P (2016) Detection of prostate cancer using temporal sequences of ultrasound data: a large clinical feasibility study. Int J Comput Assist Radiol Surg 11:947–956

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Bayat S, Azizi S, Daoud MI, Nir G, Imani F, Gerardo CD, Yan P, Tahmasebi A, Vignon F, Sojoudi S, Wilson S, Iczkowski KA, Lucia MS, Goldenberg L, Salcudean SE, Abolmaesumi P, Mousavi P (2018) Investigation of physical phenomena underlying temporal-enhanced ultrasound as a new diagnostic imaging technique: theory and simulations. IEEE Trans Ultrason Ferroelectr Freq Control 65(3):400–410

    Article  PubMed  Google Scholar 

  23. 23.

    Bayat S, Imani F, Gerardo CD, Nir G, Azizi S, Yan P, Tahmasebi A, Wilson S, Iczkowski KA, Lucia MS, Goldenberg L, Salcudean SE, Mousavi P, Abolmaesumi P (2017) Tissue mimicking simulations for temporal enhanced ultrasound-based tissue typing. In: Medical imaging 2017: ultrasonic imaging and tomography, international society for optics and photonics, vol 10139, p 101390D

  24. 24.

    Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Article  PubMed  Google Scholar 

  25. 25.

    Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43(1):59–69

    Article  Google Scholar 

  26. 26.

    Villmann T, Der R, Herrmann M, Martinetz TM (1997) Topology preservation in self-organizing feature maps: exact definition and measurement. IEEE Trans Neural Netw 8(2):256–266

    Article  CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Alireza Sedghi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is funded in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), Ontario Trillium Scholarships (OTS) and in part by the Canadian Institutes of Health Research (CIHR).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sedghi, A., Pesteie, M., Javadi, G. et al. Deep neural maps for unsupervised visualization of high-grade cancer in prostate biopsies. Int J CARS 14, 1009–1016 (2019).

Download citation


  • Temporal enhanced ultrasound
  • Deep learning
  • Deep neural maps
  • Self-organizing maps
  • Cancer diagnosis
  • Prostate cancer