A direct volume rendering visualization approach for serial PET–CT scans that preserves anatomical consistency



Our aim was to develop an interactive 3D direct volume rendering (DVR) visualization solution to interpret and analyze complex, serial multi-modality imaging datasets from positron emission tomography–computed tomography (PET–CT).


Our approach uses: (i) a serial transfer function (TF) optimization to automatically depict particular regions of interest (ROIs) over serial datasets with consistent anatomical structures; (ii) integration of a serial segmentation algorithm to interactively identify and track ROIs on PET; and (iii) parallel graphics processing unit (GPU) implementation for interactive visualization.


Our DVR visualization more easily identifies changes in ROIs in serial scans in an automated fashion and parallel GPU computation which enables interactive visualization.


Our approach provides a rapid 3D visualization of relevant ROIs over multiple scans, and we suggest that it can be used as an adjunct to conventional 2D viewing software from scanner vendors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Pfister H, Lorensen B, Bajaj C, Kindlmann G, Schroeder W, Avila L, Martin K, Machiraju R (2007) The transfer function bake-off. IEEE Comput Graph Appl 21(3):16–22

    Google Scholar 

  2. 2.

    Correa C, Ma K (2011) Visibility histograms and visibility-driven transfer functions. IEEE Trans Vis Comput Graph 17(2):192–204

    Article  PubMed  Google Scholar 

  3. 3.

    Qin H, Ye B, He R (2015) The voxel visibility model: an efficient framework for transfer function design. Comput Med Imaging Graph 40:138–146

    Article  PubMed  Google Scholar 

  4. 4.

    Ma B, Entezari A (2018) Volumetric feature-based classification and visibility analysis for transfer function design. IEEE Trans Vis Comput Graph 25(1):3253–3267

    Article  Google Scholar 

  5. 5.

    Jung Y, Kim J, Eberl S, Fulham M, Feng D (2013) Visibility-driven PET–CT visualisation with region of interest (ROI) segmentation. Visual Comput 29(6–8):805–815

    Article  Google Scholar 

  6. 6.

    Tzeng F, Ma K (2005) Intelligent feature extraction and tracking for visualizing large-scale 4D flow simulations. In: Proceedings of ACM/IEEE supercomputing 05

  7. 7.

    Akiba H, Fout N, Ma K (2006) Simultaneous classification of time-vying volume data based on the time histogram. In: Proceedings of EuroVis 06

  8. 8.

    Maciejewski R, Woo I, Chen W, Ebert D (2009) Structuring feature space: a non-parametric method for volumetric transfer function generation. IEEE Trans Vis Comput Graph 15(6):1473–1480

    Article  PubMed  Google Scholar 

  9. 9.

    Kim J, Hu Y, Eberl S, Feng D, Fulham M (2008) A fully automatic bed/linen segmentation for fused PET/CT MIP rendering. In: Proceedings of EMBC 08

  10. 10.

    Klein S, Staring M, Murphy K, Viergever MA, Pluim J (2010) Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29(1):196–205

    Article  PubMed  Google Scholar 

  11. 11.

    Bi L, Kim J, Wen L, Kumar A, Fulham M, Feng D (2013) Cellular automata and anisotropic diffusion filter based interactive tumor segmentation for positron emission tomography. In: Proceedings of EMBC 13

  12. 12.

    Desbordes P, Petitjean C, Ruan S (2016) Segmentation of lymphoma tumor in PET images using cellular automata: a preliminary study. IRBM 37(1):3–10

    Article  Google Scholar 

  13. 13.

    Wahl R, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50:122–150

    Article  CAS  Google Scholar 

  14. 14.

    Hamamci A, Kucuk N, Karaman K, Engin K, Unal G (2012) Tumor-cut: segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications. IEEE Trans Med Imaging 31(3):790–804

    Article  PubMed  Google Scholar 

  15. 15.

    Liu Y, Cheng H, Huang J, Zhang Y, Tang X (2012) An effective approach of lesion segmentation within the breast ultrasound image based on the cellular automata principle. J Digit Imaging 25(5):580–590

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Lagarias J, Reeds J, Wright M, Wright P (1998) Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim 9(1):112–147

    Article  Google Scholar 

  17. 17.

    Kniss J, Kindlmann G, Hansen C (2001) Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets. In: Proceedings of IEEE Vis 01

  18. 18.

    Meyer-Spradow J, Ropinski T, Mensmann J, Hinrichs K (2009) Voreen: a rapid-prototyping environment for ray-casting-based volume visualizations. IEEE Comput Graph Appl 29(6):6–13

    Article  CAS  PubMed  Google Scholar 

Download references


This study was funded in part by the Australia Research Council (DP160103675).

Author information



Corresponding author

Correspondence to Jinman Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study, formal consent is not required. The testing data were collected at our institution with approval from the institutional review board.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jung, Y., Kim, J., Bi, L. et al. A direct volume rendering visualization approach for serial PET–CT scans that preserves anatomical consistency. Int J CARS 14, 733–744 (2019). https://doi.org/10.1007/s11548-019-01916-2

Download citation


  • Direct volume rendering
  • PET–CT visualization
  • Transfer function
  • Serial segmentation