Abstract
Purpose
Image fusion of different imaging modalities renders valuable information to clinicians. In this paper, we proposed an automatic multimodal registration method to register intra-operative ultrasound images (US) to preoperative magnetic resonance images (MRI) in the context of image-guided neurosurgery.
Methods
We employed refined correlation ratio as a similarity metric for our intensity-based image registration method. We deem MRI as the fixed image (\(I_\mathrm{f}\)) and US as the moving image (\(I_\mathrm{m}\)) and then transform \(I_\mathrm{m}\) to align with \(I_\mathrm{f}\). We utilized the covariance matrix adaptation evolutionary strategy to find the optimal affine transformation in registration of \(I_\mathrm{m}\) to \(I_\mathrm{f}\).
Results
We applied our method on the publicly available retrospective evaluation of cerebral tumors (RESECT) database and Montreal Neurological Institute’s brain images of tumors for evaluation (BITE) database. We validated the results qualitatively and quantitatively. Qualitative validation is conducted (by the three authors) through overlaying pre- and post-registration US and MRI to allow visual assessment of the alignment. Quantitative validation is performed by utilizing the corresponding landmarks in the databases for the preoperative MRI and the intra-operative US. Average mean target registration error (mTRE) has been reduced from \(5.40\pm 4.27\) to \(2.77\pm 1.13\) in 22 patients in the RESECT database and from \(4.12\pm 2.03\) to \(2.82\pm 0.72\) in the BITE database. A nonparametric statistical analysis performed using the Wilcoxon rank sum test shows that there is a significant difference between pre- and post-registration mTREs with a p value of \(0.0058\,(p<0.05)\) for the RESECT database and \(0.0483\,(p<0.05)\) for the BITE database.
Conclusions
The proposed fully automatic registration method significantly improved the alignment of MRI and US images and can therefore be used to reduce the misalignment of US and MRI caused by brain shift, calibration errors, and patient to MRI transformation matrix.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Damas S, Cordón O, Santamaría J (2011) Medical image registration using evolutionary computation: an experimental survey. IEEE Comput Intell Mag 6(4):26–42
Ma J, Zhou H, Zhao J, Gao Y, Jiang J, Tian J (2015) Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Trans Geosci Remote Sens 53(12):6469–6481
James AP, Dasarathy BV (2014) Medical image fusion: a survey of the state of the art. Inf Fusion 19:4–19
Li S, Kang X, Fang L, Hu J, Yin H (2017) Pixel-level image fusion: a survey of the state of the art. Inf Fusion 33:100–112
Yang Y, Que Y, Huang S, Lin P (2016) Multimodal sensor medical image fusion based on type-2 fuzzy logic in nsct domain. IEEE Sens J 16(10):3735–3745
Golby AJ (2015) Image-guided neurosurgery. Academic Press, Cambridge
Besharati Tabrizi L, Mahvash M (2015) Augmented reality–guided neurosurgery: accuracy and intraoperative application of an image projection technique. J Neurosurg 123(1):206–211
Maurer CR, Fitzpatrick JM (1993) A review of medical image registration. Interact Image Guid Neurosurg 1:17–44
Gerard IJ, Kersten-Oertel M, Petrecca K, Sirhan D, Hall JA, Collins DL (2017) Brain shift in neuronavigation of brain tumors: a review. Med Image Anal 35:403–420
Nag S (2017) Image registration techniques: a survey. arXiv preprint arXiv:1712.07540
Maintz JA, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2(1):1–36
Gong M, Zhao S, Jiao L, Tian D, Wang S (2014) A novel coarse-to-fine scheme for automatic image registration based on sift and mutual information. IEEE Trans Geosci Remote Sens 52(7):4328–4338
Johnson HJ, Christensen GE (2002) Consistent landmark and intensity-based image registration. IEEE Trans Med Imaging 21(5):450–461
Zitova B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21(11):977–1000
Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40(1):16–28
Rueckert D, Aljabar P (2010) Nonrigid registration of medical images: theory, methods, and applications [applications corner]. IEEE Signal Process Mag 27(4):113–119
Sotiras A, Davatzikos C, Paragios N (2013) Deformable medical image registration: a survey. IEEE Trans Med Imaging 32(7):1153–1190
Yan CX, Goulet B, Pelletier J, Chen SJ-S, Tampieri D, Collins DL (2011) Towards accurate, robust and practical ultrasound-ct registration of vertebrae for image-guided spine surgery. Int J Comput Assist Radiol Surg 6(4):523–537
Gill S, Abolmaesumi P, Fichtinger G, Boisvert J, Pichora D, Borshneck D, Mousavi P (2012) Biomechanically constrained groupwise ultrasound to ct registration of the lumbar spine. Med Image Anal 16(3):662–674
Hacihaliloglu I, Rasoulian A, Rohling RN, Abolmaesumi P (2014) Local phase tensor features for 3-d ultrasound to statistical shape+ pose spine model registration. IEEE Trans Med Imaging 33(11):2167–2179
Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV (2018) An unsupervised learning model for deformable medical image registration. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 9252–9260
Weistrand O, Svensson S (2015) The anaconda algorithm for deformable image registration in radiotherapy. Med Phys 42(1):40–53
Zhao B, Christensen GE, Hyun Song J, Pan Y, Gerard SE, Reinhardt JM, Du K, Patton T, Bayouth JM, Hugo GD (2016) Tissue-volume preserving deformable image registration for 4dct pulmonary images. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 41–49
Maes F, Loeckx D, Vandermeulen D, Suetens P (2015) Image registration using mutual information. In: Paragios N, Duncan J, Ayache N (eds) Handbook of biomedical imaging. Springer, Boston, MA
Roche A, Malandain G, Ayache N, Pennec X (1998) Multimodal image registration by maximization of the correlation ratio. PhD thesis, INRIA
Roche A, Pennec X, Rudolph M, Auer D, Malandain G, Ourselin S, Auer LM, Ayache N (2000) Generalized correlation ratio for rigid registration of 3d ultrasound with mr images. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 567–577
Rivaz H, Collins DL (2015) Deformable registration of preoperative mr, pre-resection ultrasound, and post-resection ultrasound images of neurosurgery. Int J Comput Assist Radiol Surg 10(7):1017–1028
Masoumi N, Xiao Y, Rivaz H (2017) Marcel (inter-modality affine registration with correlation ratio): an application for brain shift correction in ultrasound-guided brain tumor resection. In: International MICCAI Brainlesion workshop. Springer, pp 55–63
Rivaz H, Chen SJ-S, Collins DL (2015) Automatic deformable mr-ultrasound registration for image-guided neurosurgery. IEEE Trans Med Imaging 34(2):366–380
Hansen N, Ostermeier A (1996) Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Evolutionary computation, 1996., Proceedings of IEEE international conference on. IEEE, pp 312–317
Xiao Y, Fortin M, Unsgård G, Rivaz H, Reinertsen I (2017) Retrospective evaluation of cerebral tumors (resect): a clinical database of pre-operative mri and intra-operative ultrasound in low-grade glioma surgeries. Med Phys 44:3875–3882
Machado I, Toews M, Luo J, Unadkat P, Essayed W, George E, Teodoro P, Carvalho H, Martins J, Golland P, Pieper S (2018) Non-rigid registration of 3d ultrasound for neurosurgery using automatic feature detection and matching. Int J Comput Assist Radiol Surg 13:1525–1538
Mercier L, Del Maestro RF, Petrecca K, Araujo D, Haegelen C, Collins DL (2012) Online database of clinical mr and ultrasound images of brain tumors. Med Phys 39(6 Part1):3253–3261
Klein S, Staring M, Pluim JP (2007) Evaluation of optimization methods for nonrigid medical image registration using mutual information and b-splines. IEEE Trans Image Process 16(12):2879–2890
Winter S, Brendel B, Pechlivanis I, Schmieder K, Igel C (2008) Registration of ct and intraoperative 3-d ultrasound images of the spine using evolutionary and gradient-based methods. IEEE Trans Evol Comput 12(3):284–296
Gong RH, Abolmaesumi P (2008) 2d/3d registration with the cma-es method. In: Medical imaging 2008: visualization, image-guided procedures, and modeling. International Society for Optics and Photonics, vol 6918, p 69181M
Otake Y, Armand M, Armiger RS, Kutzer MD, Basafa E, Kazanzides P, Taylor RH (2012) Intraoperative image-based multiview 2d/3d registration for image-guided orthopaedic surgery: incorporation of fiducial-based c-arm tracking and gpu-acceleration. IEEE Trans Med Imaging 31(4):948–962
Reinhard E, Heidrich W, Debevec P, Pattanaik S, Ward G, Myszkowski K (2010) High dynamic range imaging: acquisition, display, and image-based lighting. Morgan Kaufmann, Burlington
Fischer B, Modersitzki J (2008) Ill-posed medicine–an introduction to image registration. Inverse Probl 24(3):034008
Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evol Comput 9(2):159–195
“Cma-es in matlab-yarpiz”
Wein W, Ladikos A, Fuerst B, Shah A, Sharma K, Navab N (2013) Global registration of ultrasound to mri using the lc 2 metric for enabling neurosurgical guidance. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 34–41
Heinrich MP, Jenkinson M, Papież BW, Brady M, Schnabel JA (2013) Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 187–194
Daga P, Winston G, Modat M, White M, Mancini L, Cardoso MJ, Symms M, Stretton J, McEvoy AW, Thornton J, Micallef C (2012) Accurate localization of optic radiation during neurosurgery in an interventional mri suite. IEEE Trans Med Imaging 31(4):882–891
Fitzpatrick JM (2009) Fiducial registration error and target registration error are uncorrelated. In: Medical imaging 2009: visualization, image-guided procedures, and modeling, International Society for Optics and Photonics, vol 7261, p 726102 (2009)
Zhong X, Bayer S, Ravikumar N, Strobel N, Birkhold A, Kowarschik M, Fahrig R, Maier A (2018) Resolve intraoperative brain shift as imitation game. In: Simulation, image processing, and ultrasound systems for assisted diagnosis and navigation. Springer, pp 129–137
Hong J, Park H (2018) Non-linear approach for mri to intra-operative us registration using structural skeleton. In: Simulation, image processing, and ultrasound systems for assisted diagnosis and navigation. Springer, pp 138–145
Wein W (2018) Brain-shift correction with image-based registration and landmark accuracy evaluation. In: Simulation, image processing, and ultrasound systems for assisted diagnosis and navigation. Springer, pp 146–151
Sun L, Zhang S (2018) Deformable mri-ultrasound registration using 3d convolutional neural network. In: Simulation, image processing, and ultrasound systems for assisted diagnosis and navigation. Springer, pp 152–158
Heinrich MP (2018) Intra-operative ultrasound to mri fusion with a public multimodal discrete registration tool. In: Simulation, image processing, and ultrasound systems for assisted diagnosis and navigation. Springer, pp 159–164
Machado I, Toews M, Luo J, Unadkat P, Essayed W, George E, Teodoro P, Carvalho H, Martins J, Golland P (2018) Deformable mri-ultrasound registration via attribute matching and mutual-saliency weighting for image-guided neurosurgery. In: Simulation, image processing, and ultrasound systems for assisted diagnosis and navigation. Springer, pp 165–171
Drobny D, Vercauteren T, Ourselin S, Modat M (2018) Registration of mri and ius data to compensate brain shift using a symmetric block-matching based approach. In: Simulation, image processing, and ultrasound systems for assisted diagnosis and navigation. Springer, pp 172–178
Shams R, Boucher M-A, Kadoury S (2018) Intra-operative brain shift correction with weighted locally linear correlations of 3dus and mri. In: Simulation, image processing, and ultrasound systems for assisted diagnosis and navigation. Springer, pp 179–184
Gibbons JD, Chakraborti S (2011) Nonparametric statistical inference. In: Lovric M (ed) International encyclopedia of statistical science. Springer, Berlin, Heidelberg
Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ants similarity metric performance in brain image registration. Neuroimage 54(3):2033–2044
Modat M, Cardoso MJ, Daga P, Cash D, Fox NC, Ourselin S (2012) Inverse-consistent symmetric free form deformation. In: International workshop on biomedical image registration. Springer, pp 79–88
Xiao Y, Eikenes L, Reinertsen I, Rivaz H (2018) Nonlinear deformation of tractography in ultrasound-guided low-grade gliomas resection. Int J Comput Assist Radiol Surg 13(3):457–467
Acknowledgements
This work is funded by Natural Science Engineering Council of Canada (NSERC) Grant RGPIN-2015-04136.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest.
Ethical standard
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.
Informed consent
Informed consent was obtained from all participants included in the study.
Rights and permissions
About this article
Cite this article
Masoumi, N., Xiao, Y. & Rivaz, H. ARENA: Inter-modality affine registration using evolutionary strategy. Int J CARS 14, 441–450 (2019). https://doi.org/10.1007/s11548-018-1897-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11548-018-1897-1