Robust navigation support in lowest dose image setting

Abstract

Purpose

Clinical cardiac electrophysiology (EP) is concerned with diagnosis and treatment of cardiac arrhythmia describing abnormality or perturbation in the normal activation sequence of the myocardium. With the recent introduction of lowest dose X-ray imaging protocol for EP procedures, interventional image enhancement has gained crucial importance for the well-being of patients as well as medical staff.

Methods

In this paper, we introduce a novel method to detect and track different EP catheter electrodes in lowest dose fluoroscopic sequences based on \(\ell _1\)-sparse coding and online robust PCA (ORPCA). Besides being able to work on real lowest dose sequences, the underlying methodology achieves simultaneous detection and tracking of three main EP catheters used during ablation procedures.

Results

We have validated our algorithm on 16 lowest dose fluoroscopic sequences acquired during real cardiac ablation procedures. In addition to expert labels for 2 sequences, we have employed a crowdsourcing strategy to obtain ground truth labels for the remaining 14 sequences. In order to validate the effect of different training data, we have employed a leave-one-out cross-validation scheme yielding an average detection rate of \(86.9\%\).

Conclusion

Besides these promising quantitative results, our medical partners also expressed their high satisfaction. Being based on \(\ell _1\)-sparse coding and online robust PCA (ORPCA), our method advances previous approaches by being able to detect and track electrodes attached to multiple different catheters.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    Annot8: http://vmnavab14.informatik.tu-muenchen.de/.

  2. 2.

    A popular crowdsourcing platform for data science and machine learning.

References

  1. 1.

    Ambrosini P, Ruijters D, Niessen WJ, Moelker A, van Walsum T (2017) Fully automatic and real-time catheter segmentation in X-ray fluoroscopy. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 577–585

  2. 2.

    Amiot C, Girard C, Chanussot J, Pescatore J, Desvignes M (2016) Spatio-temporal multiscale denoising of fluoroscopic sequence. IEEE Trans Med Imaging 35(6):1565–1574

    PubMed  Article  Google Scholar 

  3. 3.

    Bourier F, Reents T, Ammar-Busch S, Buiatti A, Kottmaier M, Semmler V, Telishevska M, Brkic A, Grebmer C, Lennerz C, Kolb C, Hessling G, Deisenhofer I (2015) Evaluation of a new very low dose imaging protocol: feasibility and impact on X-ray dose levels in electrophysiology procedures. Europace 18(9):1406–1410

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Bouwmans T, Zahzah EH (2014) Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance. Comput Vis Image Underst 122:22–34

    Article  Google Scholar 

  5. 5.

    Candès EJ, Li X, Ma Y, Wright J (2011) Robust principal component analysis? J ACM 58(3):11

    Article  Google Scholar 

  6. 6.

    Coupé P, Hellier P, Kervrann C, Barillot C (2009) Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans Image Process 18(10):2221–2229

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Crowhurst J, Haqqani H, Wright D, Whitby M, Lee A, Betts J, Denman R (2017) Ultra low radiation dose during electrophysiology procedures using optimised new generation fluoroscopy technology. Pacing Clin Electrophysiol 40(8):947–954

    PubMed  Article  Google Scholar 

  8. 8.

    Fitzgibbon A, Pilu M, Fisher RB (1999) Direct least square fitting of ellipses. IEEE Trans Pattern Anal Mach Intell 21(5):476–480

    Article  Google Scholar 

  9. 9.

    Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: Wells WM, Colchester A, Delp S (eds) Medical image computing and computer-assisted intervention—MICCAI’98. Springer, Berlin, pp 130–137

    Google Scholar 

  10. 10.

    Gaita F, Guerra PG, Battaglia A, Anselmino M (2016) The dream of near-zero X-rays ablation comes true. Eur Heart J 37(36):2749–2755

    PubMed  Article  Google Scholar 

  11. 11.

    Hariharan SG, Strobel N, Kaethner C, Kowarschik M, Demirci S, Albarqouni S, Fahrig R, Navab N (2018) A photon recycling approach to the denoising of ultra-low dose X-ray sequences. Int J Comput Assist Radiol Surg 13:847–854. https://doi.org/10.1007/s11548-018-1746-2

    PubMed  Article  Google Scholar 

  12. 12.

    Hong B, Wei L, Hu Y, Cai D, He X (2016) Online robust principal component analysis via truncated nuclear norm regularization. Neurocomputing 175:216–222

    Article  Google Scholar 

  13. 13.

    Javed S, Bouwmans T, Jung SK (2017) Improving OR-PCA via smoothed spatially-consistent low-rank modeling for background subtraction. In: Proceedings of the symposium on applied computing. ACM, pp 89–94

  14. 14.

    Javed S, Oh SH, Sobral A, Bouwmans T, Jung SK. (2014) OR-PCA with MRF for robust foreground detection in highly dynamic backgrounds. In: Asian conference on computer vision. Springer, pp 284–299

  15. 15.

    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  16. 16.

    Ma Y, Gogin N, Cathier P, Housden RJ, Gijsbers G, Cooklin M, O’Neill M, Gill J, Rinaldi CA, Razavi R, Rhode KS (2013) Real-time X-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventions. Med Phys 40(7):071902

    PubMed  Article  Google Scholar 

  17. 17.

    Macle L, Thibault B, Andrade JG (2016) Cardiac electrophysiology procedures guided by novel non-fluoroscopic catheter tracking systems. Expert Rev Medl Dev 13(4):309–311

    CAS  Article  Google Scholar 

  18. 18.

    Matviychuk Y, Mailhé B, Chen X, Wang Q, Kiraly A, Strobel N, Nadar M (2016) Learning a multiscale patch-based representation for image denoising in X-ray fluoroscopy. In: 2016 IEEE international conference on image processing (ICIP). IEEE, pp 2330–2334

  19. 19.

    Milletari F, Belagiannis V, Navab N, Fallavollita P (2014) Fully automatic catheter localization in c-arm images using \(\ell _1\)-sparse coding. In: Medical image computing and computer-assisted intervention—MICCAI 2014, Part II, pp 570–577

  20. 20.

    Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11(285–296):23–27

    Google Scholar 

  21. 21.

    Panayiotou M, Rhode KS, King AP, Ma Y, Cooklin M, Neill OM, Gill J, Housden CA, Housden RJ (2015) Image-based view-angle independent cardiorespiratory motion gating and coronary sinus catheter tracking for X-ray-guided cardiac electrophysiology procedures. Phys Med Biol 60(20):8087

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Song W, Zhu J, Li Y, Chen C (2016) Image alignment by online robust PCA via stochastic gradient descent. IEEE Trans Circuits Syst Video Technol 26(7):1241–1250

    Article  Google Scholar 

  23. 23.

    Vaswani N, Bouwmans T, Javed S, Narayanamurthy P (2018) Robust PCA, subspace learning, and tracking. In: IEEE signal processing magazine, vol 35, no 4, pp 32–55

    Article  Google Scholar 

  24. 24.

    Volpi D, Sarhan MH, Ghotbi R, Navab N, Mateus D, Demirci S (2015) Online tracking of interventional devices for endovascular aortic repair. Int J Comput Assist Radiol Surg 10(6):773–781

    PubMed  Article  Google Scholar 

  25. 25.

    Weickert J, Scharr H (2002) A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance. J Vis Commun Image Represent 13(1–2):103–118

    Article  Google Scholar 

  26. 26.

    Wolterink JM, Leiner T, Viergever MA, Išgum I (2017) Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging 36(12):2536–2545

    PubMed  Article  Google Scholar 

  27. 27.

    Wu X, Housden J, Ma Y, Razavi B, Rhode K, Rueckert D (2015) Fast catheter segmentation from echocardiographic sequences based on segmentation from corresponding X-ray fluoroscopy for cardiac catheterization interventions. IEEE Trans Med Imaging 34(4):861–876

    PubMed  Article  Google Scholar 

  28. 28.

    Zhan J, Lois B, Guo H, Vaswani, N (2016) Online (and offline) robust PCA: novel algorithms and performance guarantees. In: Artificial intelligence and statistics, pp 1488–1496

  29. 29.

    Zoni-Berisso M, Lercari F, Carazza T, Domenicucci S (2014) Epidemiology of atrial fibrillation: European perspective. Clin Epidemiol 6:213–220

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mai Bui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bui, M., Bourier, F., Baur, C. et al. Robust navigation support in lowest dose image setting. Int J CARS 14, 291–300 (2019). https://doi.org/10.1007/s11548-018-1874-8

Download citation

Keywords

  • Computer-assisted electrophysiology
  • Electrode tracking
  • Sparse coding
  • Online robust PCA
  • Online tracking
  • Fluoroscopy