Ollier W, Sprosen T, Peakman T (2005) Uk biobank: from concept to reality. Pharmacogenomics 6(6):639–646. https://doi.org/10.2217/14622416.6.6.639
Article
PubMed
Google Scholar
Bamberg F, Kauczor HU, Weckbach S, Schlett CL, Forsting M, Ladd SC, Greiser KH, Weber MA, Schulz-Menger J, Niendorf T, Pischon T, Caspers S, Amunts K, Berger K, Blow R, Hosten N, Hegenscheid K, Krncke T, Linseisen J, Gnther M, Hirsch JG, Khn A, Hendel T, Wichmann HE, Schmidt B, Jckel KH, Hoffmann W, Kaaks R, Reiser MF, Vlzke H, the German National Cohort MRI Study Investigators F (2015) Whole-body MR imaging in the German national cohort: rationale, design, and technical background. Radiology 277(1):206–220
Article
Google Scholar
Shah S, Chauhan N (2016) Techniques for detection and analysis of tumours from brain MRI images: a review. J Biomed Eng Med Imaging 3(1):09
Article
Google Scholar
Smitha P, Shaji L, Mini MG Dr (2011) A review of medical image classification techniques. In: IJCA Proceedings on international conference on VLSI, communications and instrumentation (ICVCI), vol 11, pp 34–38
Sindhu A, Meera S (2015) A survey on detecting brain tumorinmri images using image processing techniques. Int J Innov Res Comput Commun Eng 3(4):123–129
Google Scholar
Nailon WH (2010) Texture analysis methods for medical image characterisation, chap. 4. http://www.intechopen.com/books/biomedical-imaging/texture-analysis-methods-for-medical-image-characterisation. Accessed 15 Jan 2018
Dougherty G (2010) Image analysis in medical imaging: recent advances in selected examples. Biomed Imaging Interv J (online J) 6(3):e2
James AP, Dasarathy BV (2015) A review of feature and data fusion with medical images. CRC Press, Boca Raton, pp 491–507
Google Scholar
Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ (2012) Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446. https://doi.org/10.1016/j.ejca.2011.11.036. http://www.sciencedirect.com/science/article/pii/S0959804911009993
Article
Google Scholar
Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: Images are more than pictures, they are data. Radiology 278(2):563–577
Article
Google Scholar
Küstner T, Bahar P, Würslin C, Gatidis S, Martirosian P, Schwenzer NF, Yang B, Schmidt H (2015) A new approach for automatic image quality assessment. In: Proceedings of the international society for magnetic resonance in medicine (ISMRM), Toronto, Canada, p 4735
Marquand A, Rondina J, Mourao-Miranda J, Rocha-Rego V, Giampietro V Pattern recognition of brain image data (PROBID). http://www.kcl.ac.uk/ioppn/depts/neuroimaging/research/imaginganalysis/Software/PROBID.aspx. Accessed 17 Dec 2017
Schrouff J, Rosa MJ, Rondina JM, Marquand AF, Chu C, Ashburner J, Phillips C, Richiardi J, Mourão-Miranda J (2013) Pronto: pattern recognition for neuroimaging toolbox. Neuroinformatics 11(3):319–337
CAS
Article
Google Scholar
Kus R (2016) FEATbox (feature extraction and classification toolbox). http://www.iba.muni.cz/index-en.php?pg=research--data-analysis-tools--featbox. Accessed 17 Dec 2017
Khosla A, Bainbridge WA, Torralba A, Oliva A (2013) Modifying the memorability of face photographs. In: International conference on computer vision (ICCV), pp 3200 – 3207
Liebgott A, Küstner T, Gatidis S, Schick F, Yang B (2016) Active learning for magnetic resonance image quality assessment. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP), Shanghai, China, pp 922–926
Küstner T, Schwartz M, Kaupp A, Martirosian P, Gatidis S, Schwenzer NF, Schick F, Schmidt H, Yang B (2016) An active learning platform for automatic MR image quality assessment. In: Proceedings of the international society for magnetic resonance in medicine (ISMRM), Singapore, p 5235
Liebgott A, Boborzi D, Gatidis S, Schick F, Nikolaou K, Yang B, Küstner T (2018) Active learning for automated reference-free MR image quality assessment: decreasing the number of required training samples by reduction of intra-batch redundancy. In: Proceedings of the international society for magnetic resonance in medicine (ISMRM), Paris, France
Liebgott A, Gatidis S, Liebgott F, Nikoalou K, Yang B (2018) Automated detection of high FDG uptake regions in CT images. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP), Calgary, AB, Canada
McGee KP, Manduca A, Felmlee JP, Riederer SJ, Ehman RL (2000) Image metric-based correction (autocorrection) of motion effects: analysis of image metrics. J Magn Reson Imaging 11(2):174–181
CAS
Article
Google Scholar
Pietikinen M, Hadid A, Zhao G, Ahonen T (2011) Computer vision using local binary patterns. Springer, Berlin
Book
Google Scholar
Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987
Article
Google Scholar
Matas J, Chum O, Urban M, Pajdla T (2002) Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of the BMVC, pp 36.1–36.10
Achanta R, Estrada F, Wils P, Ssstrunk S (2008)Salient region detection and segmentation. In: International conference on computer vision systems (ICVS ’08). Springer Lecture Notes in Computer Science, vol 5008. Springer, Berlin, pp 66–75
Finkel RA, Bentley JL (1974) Quad trees a data structure for retrieval on composite keys. Acta Inform 4(1):1–9
Article
Google Scholar
Tuytelaars T, Van Gool L (2004) Matching widely separated views based on affine invariant regions. Int J Comput Vis 59(1):61–85
Article
Google Scholar
Gibbons A (1985) Algorithmic graph theory. Cambridge University Press, Cambridge
Google Scholar
Guizar-Sicairos M, Gutiérrez-Vega JC (2004) Computation of quasi-discrete hankel transforms of integer order for propagating optical wave fields. J Opt Soc Am A 21(1):53–58
Article
Google Scholar
Smith TS Jr, Lange G, Marks W (1996) Fractal methods and results in cellular morphology dimensions, lacunarity and multifractals. J Neurosci Methods 69(2):123–136
Article
Google Scholar
Harris C, Stephens M (1988) A combined corner and edge detector. In: Proceedings of fourth Alvey vision conference, pp 147–151
Gilles S (1998) Robust description and matching of images. University of Oxford, Oxford
Google Scholar
Lindeberg T (2013) Scale selection properties of generalized scale-space interest point detectors. J Math Imaging Vis 46(2):177–210
Article
Google Scholar
Laws K (1980) Textured Image Segmentation. Ph.D. Thesis-Microfilm, University of Southern California,
Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (surf). Comput Vis Image Underst 110(3):346–359
Article
Google Scholar
Kämäräinen, JK (2012) Gabor features in image analysis. In: International conference on image processing theory, tools and applications. Institute of Electrical and Electronics Engineers IEEE, pp 1–2
Faraki M, Harandi MT, Porikli F (2015) Approximate infinite-dimensional region covariance descriptors for image classification. In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1364–1368
Garca-Olalla, Alegre E, Fernndez-Robles L, Gonzlez-Castro V (2014) Local oriented statistics information booster (losib) for texture classification. In: 2014 22nd international conference on pattern recognition, pp 1114–1119
Zernike VF (1934) Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode. Physica 1:689–704
Article
Google Scholar
Tahmasbi A, Saki F, Shokouhi SB (2011) Classification of benign and malignant masses based on Zernike moments. Comput Biol Med 41(8):726–735
Article
Google Scholar
Flusser J, Suk T (2006) Rotation moment invariants for recognition of symmetric objects. IEEE Trans Image Process 15(12):3784–3790
Article
Google Scholar
http://de.mathworks.com/matlabcentral/fileexchange/35552-hu-moments-of-order-3. Accessed 15 Jul 2016
Suk T, Flusser J (2003) Combined blur and affine moment invariants and their use in pattern recognition. Pattern Recognit 36(12):2895–2907
Article
Google Scholar
Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern SMC-3(6):610–621
Article
Google Scholar
Solomon TBC (2010) Fundamentals of Digital image processing: a practical approach with examples in MATLAB. Wiley, Hoboken
Book
Google Scholar
Galloway MM (1975) Texture analysis using gray level run lengths. Comput Gr Image Process 4(2):172–179
Article
Google Scholar
Iftekharuddin KM, Jia W, Marsh R (2003) Fractal analysis of tumor in brain MR images. Mach Vis Appl 13(5–6):352–362
Article
Google Scholar
Chang C, Lin C (2011) LIBSVM: a library for support vector machines. T Intell Syst Technol 2:1–27
Article
Google Scholar