ImFEATbox: a toolbox for extraction and analysis of medical image features

Abstract

Purpose

In medical imaging, the digital post-processing and analysis of acquired images has become an important research field. Topics include various applications of image processing and machine learning aiming to assist radiologists in their diagnostic work. A crucial step in successfully implementing such systems is finding appropriate mathematical descriptions to reflect characteristics of acquired images. Which features are the most meaningful ones strongly depends on the underlying scientific/diagnostic question and the image itself. This makes researching, implementing and testing features time-consuming and cost-intensive. In our work, we aim to address this issue by creating ImFEATbox, a publicly available toolbox to extract and analyze image features for a wide range of applications.

Methods

To reduce the amount of time spent for choosing the right features, we provide an assortment of feature extraction algorithms which are suitable for a broad variety of medical image processing problems. The toolbox includes both global and local features as well as feature descriptors. While being primarily developed in MATLAB, the majority of our algorithms is also available in Python to enable access to a wider range of researchers.

Results

We tested the applicability of ImFEATbox on an FDG-PET/CT data set of 12 patients diagnosed with lung cancer and an MRI data set of 50 patients with prostate lesions. Employing the implemented algorithms in an exemplary manner, we are able to demonstrate its potential for different scientific problems, e.g., show differences between features, indicate redundancies in extracted feature sets by means of a correlation analysis and training a SVM to distinguish between high-risk and low-risk prostate lesions.

Conclusion

ImFEATbox provides a variety of feature extraction algorithms suitable for a large number of post-processing and analysis applications in medical imaging. The toolbox is publicly available and can thus be beneficial to a wide range of researchers working on medical image analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Ollier W, Sprosen T, Peakman T (2005) Uk biobank: from concept to reality. Pharmacogenomics 6(6):639–646. https://doi.org/10.2217/14622416.6.6.639

    Article  PubMed  Google Scholar 

  2. 2.

    Bamberg F, Kauczor HU, Weckbach S, Schlett CL, Forsting M, Ladd SC, Greiser KH, Weber MA, Schulz-Menger J, Niendorf T, Pischon T, Caspers S, Amunts K, Berger K, Blow R, Hosten N, Hegenscheid K, Krncke T, Linseisen J, Gnther M, Hirsch JG, Khn A, Hendel T, Wichmann HE, Schmidt B, Jckel KH, Hoffmann W, Kaaks R, Reiser MF, Vlzke H, the German National Cohort MRI Study Investigators F (2015) Whole-body MR imaging in the German national cohort: rationale, design, and technical background. Radiology 277(1):206–220

    Article  Google Scholar 

  3. 3.

    Shah S, Chauhan N (2016) Techniques for detection and analysis of tumours from brain MRI images: a review. J Biomed Eng Med Imaging 3(1):09

    Article  Google Scholar 

  4. 4.

    Smitha P, Shaji L, Mini MG Dr (2011) A review of medical image classification techniques. In: IJCA Proceedings on international conference on VLSI, communications and instrumentation (ICVCI), vol 11, pp 34–38

  5. 5.

    Sindhu A, Meera S (2015) A survey on detecting brain tumorinmri images using image processing techniques. Int J Innov Res Comput Commun Eng 3(4):123–129

    Google Scholar 

  6. 6.

    Nailon WH (2010) Texture analysis methods for medical image characterisation, chap. 4. http://www.intechopen.com/books/biomedical-imaging/texture-analysis-methods-for-medical-image-characterisation. Accessed 15 Jan 2018

  7. 7.

    Dougherty G (2010) Image analysis in medical imaging: recent advances in selected examples. Biomed Imaging Interv J (online J) 6(3):e2

  8. 8.

    James AP, Dasarathy BV (2015) A review of feature and data fusion with medical images. CRC Press, Boca Raton, pp 491–507

    Google Scholar 

  9. 9.

    Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ (2012) Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446. https://doi.org/10.1016/j.ejca.2011.11.036. http://www.sciencedirect.com/science/article/pii/S0959804911009993

    Article  Google Scholar 

  10. 10.

    Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: Images are more than pictures, they are data. Radiology 278(2):563–577

    Article  Google Scholar 

  11. 11.

    Küstner T, Bahar P, Würslin C, Gatidis S, Martirosian P, Schwenzer NF, Yang B, Schmidt H (2015) A new approach for automatic image quality assessment. In: Proceedings of the international society for magnetic resonance in medicine (ISMRM), Toronto, Canada, p 4735

  12. 12.

    Marquand A, Rondina J, Mourao-Miranda J, Rocha-Rego V, Giampietro V Pattern recognition of brain image data (PROBID). http://www.kcl.ac.uk/ioppn/depts/neuroimaging/research/imaginganalysis/Software/PROBID.aspx. Accessed 17 Dec 2017

  13. 13.

    Schrouff J, Rosa MJ, Rondina JM, Marquand AF, Chu C, Ashburner J, Phillips C, Richiardi J, Mourão-Miranda J (2013) Pronto: pattern recognition for neuroimaging toolbox. Neuroinformatics 11(3):319–337

    CAS  Article  Google Scholar 

  14. 14.

    Kus R (2016) FEATbox (feature extraction and classification toolbox). http://www.iba.muni.cz/index-en.php?pg=research--data-analysis-tools--featbox. Accessed 17 Dec 2017

  15. 15.

    Khosla A, Bainbridge WA, Torralba A, Oliva A (2013) Modifying the memorability of face photographs. In: International conference on computer vision (ICCV), pp 3200 – 3207

  16. 16.

    Liebgott A, Küstner T, Gatidis S, Schick F, Yang B (2016) Active learning for magnetic resonance image quality assessment. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP), Shanghai, China, pp 922–926

  17. 17.

    Küstner T, Schwartz M, Kaupp A, Martirosian P, Gatidis S, Schwenzer NF, Schick F, Schmidt H, Yang B (2016) An active learning platform for automatic MR image quality assessment. In: Proceedings of the international society for magnetic resonance in medicine (ISMRM), Singapore, p 5235

  18. 18.

    Liebgott A, Boborzi D, Gatidis S, Schick F, Nikolaou K, Yang B, Küstner T (2018) Active learning for automated reference-free MR image quality assessment: decreasing the number of required training samples by reduction of intra-batch redundancy. In: Proceedings of the international society for magnetic resonance in medicine (ISMRM), Paris, France

  19. 19.

    Liebgott A, Gatidis S, Liebgott F, Nikoalou K, Yang B (2018) Automated detection of high FDG uptake regions in CT images. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP), Calgary, AB, Canada

  20. 20.

    McGee KP, Manduca A, Felmlee JP, Riederer SJ, Ehman RL (2000) Image metric-based correction (autocorrection) of motion effects: analysis of image metrics. J Magn Reson Imaging 11(2):174–181

    CAS  Article  Google Scholar 

  21. 21.

    Pietikinen M, Hadid A, Zhao G, Ahonen T (2011) Computer vision using local binary patterns. Springer, Berlin

    Book  Google Scholar 

  22. 22.

    Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  23. 23.

    Matas J, Chum O, Urban M, Pajdla T (2002) Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of the BMVC, pp 36.1–36.10

  24. 24.

    Achanta R, Estrada F, Wils P, Ssstrunk S (2008)Salient region detection and segmentation. In: International conference on computer vision systems (ICVS ’08). Springer Lecture Notes in Computer Science, vol 5008. Springer, Berlin, pp 66–75

  25. 25.

    Finkel RA, Bentley JL (1974) Quad trees a data structure for retrieval on composite keys. Acta Inform 4(1):1–9

    Article  Google Scholar 

  26. 26.

    Tuytelaars T, Van Gool L (2004) Matching widely separated views based on affine invariant regions. Int J Comput Vis 59(1):61–85

    Article  Google Scholar 

  27. 27.

    Gibbons A (1985) Algorithmic graph theory. Cambridge University Press, Cambridge

    Google Scholar 

  28. 28.

    Guizar-Sicairos M, Gutiérrez-Vega JC (2004) Computation of quasi-discrete hankel transforms of integer order for propagating optical wave fields. J Opt Soc Am A 21(1):53–58

    Article  Google Scholar 

  29. 29.

    Smith TS Jr, Lange G, Marks W (1996) Fractal methods and results in cellular morphology dimensions, lacunarity and multifractals. J Neurosci Methods 69(2):123–136

    Article  Google Scholar 

  30. 30.

    Harris C, Stephens M (1988) A combined corner and edge detector. In: Proceedings of fourth Alvey vision conference, pp 147–151

  31. 31.

    Gilles S (1998) Robust description and matching of images. University of Oxford, Oxford

    Google Scholar 

  32. 32.

    Lindeberg T (2013) Scale selection properties of generalized scale-space interest point detectors. J Math Imaging Vis 46(2):177–210

    Article  Google Scholar 

  33. 33.

    Laws K (1980) Textured Image Segmentation. Ph.D. Thesis-Microfilm, University of Southern California,

  34. 34.

    Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (surf). Comput Vis Image Underst 110(3):346–359

    Article  Google Scholar 

  35. 35.

    Kämäräinen, JK (2012) Gabor features in image analysis. In: International conference on image processing theory, tools and applications. Institute of Electrical and Electronics Engineers IEEE, pp 1–2

  36. 36.

    Faraki M, Harandi MT, Porikli F (2015) Approximate infinite-dimensional region covariance descriptors for image classification. In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1364–1368

  37. 37.

    Garca-Olalla, Alegre E, Fernndez-Robles L, Gonzlez-Castro V (2014) Local oriented statistics information booster (losib) for texture classification. In: 2014 22nd international conference on pattern recognition, pp 1114–1119

  38. 38.

    Zernike VF (1934) Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode. Physica 1:689–704

    Article  Google Scholar 

  39. 39.

    Tahmasbi A, Saki F, Shokouhi SB (2011) Classification of benign and malignant masses based on Zernike moments. Comput Biol Med 41(8):726–735

    Article  Google Scholar 

  40. 40.

    Flusser J, Suk T (2006) Rotation moment invariants for recognition of symmetric objects. IEEE Trans Image Process 15(12):3784–3790

    Article  Google Scholar 

  41. 41.

    http://de.mathworks.com/matlabcentral/fileexchange/35552-hu-moments-of-order-3. Accessed 15 Jul 2016

  42. 42.

    Suk T, Flusser J (2003) Combined blur and affine moment invariants and their use in pattern recognition. Pattern Recognit 36(12):2895–2907

    Article  Google Scholar 

  43. 43.

    Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern SMC-3(6):610–621

    Article  Google Scholar 

  44. 44.

    Solomon TBC (2010) Fundamentals of Digital image processing: a practical approach with examples in MATLAB. Wiley, Hoboken

    Book  Google Scholar 

  45. 45.

    Galloway MM (1975) Texture analysis using gray level run lengths. Comput Gr Image Process 4(2):172–179

    Article  Google Scholar 

  46. 46.

    Iftekharuddin KM, Jia W, Marsh R (2003) Fractal analysis of tumor in brain MR images. Mach Vis Appl 13(5–6):352–362

    Article  Google Scholar 

  47. 47.

    Chang C, Lin C (2011) LIBSVM: a library for support vector machines. T Intell Syst Technol 2:1–27

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Küstner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

Formal approval was waived by the local ethics committee due to the retrospective nature of this analysis. This article does not contain any studies with animals.

Informed consent

All patients had given their written informed consent for the conductance of respective imaging studies.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liebgott, A., Küstner, T., Strohmeier, H. et al. ImFEATbox: a toolbox for extraction and analysis of medical image features. Int J CARS 13, 1881–1893 (2018). https://doi.org/10.1007/s11548-018-1859-7

Download citation

Keywords

  • Feature extraction
  • Toolbox
  • Medical image analysis
  • MATLAB
  • Python