Ambastha S, Umesh S, Dabir S, Asokan S (2016) Spinal needle force monitoring during lumbar puncture using fiber Bragg grating force device. J Biomed Opt 21(11):117002
PubMed
Google Scholar
Asami T, Terasaki H, Ito Y, Sugita T, Kaneko H, Nishiyama J, Namiki H, Kobayashi M, Nishizawa N (2016) Development of a fiber-optic optical coherence tomography probe for intraocular use. Investig Opthalmol Vis Sci 57(9):OCT568–OCT574
Google Scholar
Balicki M, Han Jh, Iordachita I, Gehlbach P, Handa J, Taylor R, Kang J (2009) Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery. In: Medical image computing and computer-assisted intervention, pp 108–115
Google Scholar
Borghesan G, Ourak M, Lankenau E, Hüttmann G, Schulz-Hildebrant H, Willekens K, Stalmans P, Reynaerts D, Vander Poorten E (2018) Single scan OCT-based retina detection for robot-assisted retinal vein cannulation. J Med Robot Res 3(02):1840005
Google Scholar
Bruyninckx H, Soetens P, Koninckx B (2003) The real-time motion control core of the Orocos project. In: IEEE international conference on robotics and automation, vol 2, pp 2766–2771
Du LT, Wessels IF, Underdahl JP, Auran JD (2001) Stereoacuity and depth perception decrease with increased instrument magnification: comparing a non-magnified system with lens loupes and a surgical microscope. Binocul Vis Strabismus Q 16(1):61–7
CAS
PubMed
Google Scholar
Ehlers JP, Srivastava SK, Feiler D, Noonan AI, Rollins AM, Tao YK (2014) Integrative Advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback. PLoS ONE 9(8):e105224
PubMed
PubMed Central
Google Scholar
Ergeneman O, Pokki J, Počepcovà V, Hall H, Abbott JJ, Nelson BJ (2011) Characterization of puncture forces for retinal vein cannulation. J Med Devices 5(4):044504
Google Scholar
Gijbels A, Vander Poorten EB, Stalmans P, Reynaerts D (2015) Development and experimental validation of a force sensing needle for robotically assisted retinal vein cannulations. In: IEEE international conference on robotics and automation, pp 2270–2276
Gijbels A, Willekens K, Esteveny L, Stalmans P, Reynaerts D, Vander Poorten EB (2016) Towards a clinically applicable robotic assistance system for retinal vein cannulation. In: IEEE international conference on biomedical robotics and biomechatronics, pp 284–291
Gonenc B, Chamani A, Handa J, Gehlbach P, Taylor R, Iordachita I (2017) 3-DOF force-sensing motorized micro-forceps for robot-assisted vitreoretinal surgery. IEEE Sens 17(11):3526–3541
Google Scholar
Gonenc B, Iordachita I (2016) FBG-based transverse and axial force-sensing micro-forceps for retinal microsurgery. In: IEEE sensors
Gonenc B, Taylor RH, Iordachita I, Gehlbach P, Handa J (2014) Force-sensing microneedle for assisted retinal vein cannulation. In: IEEE sensors proceedings, pp 698–701
Gonenc B, Tran N, Riviere CN, Gehlbach P, Taylor RH, Iordachita I (2015) Force-based puncture detection and active position holding for assisted retinal vein cannulation. In: IEEE/SICE/RSJ international conference on multisensor fusion and integration for intelligent systems, pp 322–327
Hayreh SS, Zimmerman MB, Podhajsky P (1994) Incidence of various types of retinal vein occlusion and their recurrence and demographic characteristics. Am J Ophthalmol 117(4):429–441
CAS
PubMed
Google Scholar
He X, Handa J, Gehlbach P, Taylor RH, Iordachita I (2014) A submillimetric 3-DOF force sensing instrument with integrated fiber bragg grating for retinal microsurgery. IEEE Trans Biomed Eng 61(2):522–534
PubMed
PubMed Central
Google Scholar
Iordachita I, Sun Z, Balicki M, Kang JU, Phee SJ, Handa J, Gehlbach P, Taylor R (2009) A sub-millimetric, 0.25 mN resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery. Int J Comput Assist Radiol Surg 4(4):383–390
PubMed
PubMed Central
Google Scholar
Menciassi A, Eisinberg A, Scalari G, Anticoli C, Carrozza M, Dario P (2001) Force feedback-based microinstrument for measuring tissue properties and pulse in microsurgery. In: IEEE international conference on robotics and automation, vol 1, pp 626–631
Molaei A, Abedloo E, de Smet MD, Safi S, Khorshidifar M, Ahmadieh H, Khosravi MA, Daftarian N (2017) Toward the art of robotic-assisted vitreoretinal surgery. J Ophthalmic Vis Res 12:175–182
Google Scholar
Noda Y, Ida Y, Tanaka S, Toyama T, Roggia MF, Tamaki Y, Sugita N, Mitsuishi M, Ueta T (2013) Impact of robotic assistance on precision of vitreoretinal surgical procedures. PLoS ONE 8:1–6
Google Scholar
Olver J, Cassidy L (2005) Ophthalmology at a glance. Blackwell Science, Hoboken
Google Scholar
Peirs J, Clijnen J, Reynaerts D, Brussel HV, Herijgers P, Corteville B, Boone S (2004) A micro optical force sensor for force feedback during minimally invasive robotic surgery. Sens Actuators A 115(2–3):447–455
CAS
Google Scholar
Riviere C, Ang WT, Khosla P (2003) Toward active tremor canceling in handheld microsurgical instruments. IEEE Trans Robot Autom 19:793–800
Google Scholar
Rogers S, Mcintosh RL, Grad B, Journ D, Cheung N, Lim L, Wang JJ, Mitchell P, Kowalski JW, Nguyen H, Wong TY (2011) The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Popul Stud 117:1–14
Google Scholar
Sjaarda RN, Glaser BM, Thompson JT, Murphy RP, Hanham A (1995) Distribution of iatrogenic retinal breaks in macular hole surgery. Ophthalmology 102(9):1387–1392
CAS
PubMed
Google Scholar
Smits J, Mouloud O, Gijbels A, Esteveny L, Borghesan G, Schoevaerdts L, Willekens K, Stalmans P, Lankenau E, Schulz-Hildebrant H, Hüttmann G, Reynaerts D, Vander Poorten, E (2018) Development and experimental validation of a combined FBG force and OCT distance sensing needle for robot-assisted retinal vein cannulation. In: IEEE international conference on robotics and automation
Smits J, Ourak M, Gijbels A, Borghesan G, Esteveny L, Schoevaerdts L, Willekens K, Stalmans P, Lankenau E, Hüttmann G, Reynaerts D, Poorten EBV (2017) Combined force and distance sensing for robot-assisted vitreo-retinal surgery. In: Proceedings of the 7th joint workshop on new technologies for computer/robot assisted surgery
Song C, Gehlbach PL, Kang JU (2012) Active tremor cancellation by a “smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography. Opt Express 20(21):23414–23421
PubMed
PubMed Central
Google Scholar
Tang WM, Han DP (2000) A study of surgical approaches to retinal vascular occlusions. Arch Ophthalmol 118(1):138–43
CAS
PubMed
Google Scholar
Zhang X (2004) Silicon microsurgery-force sensor based on diffractive optical MEMS encoders. Sensor Rev 24(1):37–41
Google Scholar