Patient-specific catheter shaping for the minimally invasive closure of the left atrial appendage

  • Eva C. Graf
  • Ilka Ott
  • Julian Praceus
  • Felix Bourier
  • Tim C. Lueth
Original Article



The minimally invasive closure of the left atrial appendage is a promising alternative to anticoagulation for stroke prevention in patients suffering from atrial fibrillation. One of the challenges of this procedure is the correct positioning and the coaxial alignment of the tip of the catheter sheath to the implant landing zone.


In this paper, a novel preoperative planning system is proposed that allows patient-individual shaping of catheters to facilitate the correct positioning of the catheter sheath by offering a patient-specific catheter shape. Based on preoperative three-dimensional image data, anatomical points and the planned implant position are marked interactively and a patient-specific catheter shape is calculated if the standard catheter is not considered as suitable. An approach to calculate a catheter shape with four bends by maximization of the bending radii is presented. Shaping of the catheter is supported by a bending form that is automatically generated in the planning program and can be directly manufactured by using additive manufacturing methods.


The feasibility of the planning and shaping of the catheter could be successfully shown using six data sets. The patient-specific catheters were tested in comparison with standard catheters by physicians on heart models. In four of the six tested models, the participating physicians rated the patient-individual catheters better than the standard catheter.


The novel approach for preoperatively planned and shaped patient-specific catheters designed for the minimally invasive closure of the left atrial appendage could be successfully implemented and a feasibility test showed promising results in anatomies that are difficult to access with the standard catheter.


Patient-individual Catheter shape Catheter bending Left atrial appendage occlusion Automated construction 



The authors would like to thank the physicians of the German Heart Center Munich for participating in the evaluation experiment and their colleagues at the Institute of Micro Technology and Medical Device Technology at the Technical University of Munich, especially Yannick Krieger and Ismail Kuru, for their support.


This work was funded by GE Global Research Europe.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study, formal consent is not required.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Heeringa J, van der Kuip Deirdre A M, Hofman A, Kors JA, van Herpen G, Stricker BHC, Stijnen T, Lip GYH, Witteman JCM (2006) Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur Heart J 27(8):949–953. CrossRefGoogle Scholar
  2. 2.
    Wolf PA, Abbott RD, Kannel WB (1991) Atrial fibrillation as an independent risk factor for stroke: the Framingham study. Stroke 22(8):983–988CrossRefGoogle Scholar
  3. 3.
    Blackshear JL, Odell JA (1996) Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation. Ann Thorac Surg 61(2):755–759. CrossRefGoogle Scholar
  4. 4.
    Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener HC, Heidbuchel H, Hendriks J, Hindricks G, Manolis AS, Oldgren J, Popescu BA, Schotten U, van Putte B, Vardas P, Agewall S, Camm J, Baron Esquivias G, Budts W, Carerj S, Casselman F, Coca A, de Caterina R, Deftereos S, Dobrev D, Ferro JM, Filippatos G, Fitzsimons D, Gorenek B, Guenoun M, Hohnloser SH, Kolh P, Lip GYH, Manolis A, McMurray J, Ponikowski P, Rosenhek R, Ruschitzka F, Savelieva I, Sharma S, Suwalski P, Tamargo JL, Taylor CJ, van Gelder IC, Voors AA, Windecker S, Zamorano JL, Zeppenfeld K (2016) 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J 37(38):2893–2962. CrossRefGoogle Scholar
  5. 5.
    Statistisches Bundesamt (2014) Fallpauschalenbezogene Krankenhausstatistik (DRG-Statistik): Operationen und Prozeduren der vollstationären Patientinnen und Patienten in Krankenhäusern bis zum kodierbaren Endpunkt. WiesbadenGoogle Scholar
  6. 6.
    Statistisches Bundesamt (2016) Fallpauschalenbezogene Krankenhausstatisik (DRG-Statistik): Operationen und Prozeduren der vollstationären Patientinnen und Patienten in Krankenhäusern bis zum kodierbaren Endpunkt. WiesbadenGoogle Scholar
  7. 7.
    Meier B, Blaauw Y, Khattab AA, Lewalter T, Sievert H, Tondo C, Glikson M, Reviewers Document, Lip GYH, Lopez-Minguez J, Roffi M, Israel C, Dudek D, Savelieva I (2014) EHRA/EAPCI expert consensus statement on catheter-based left atrial appendage occlusion. Europace 16(10):1397–1416. CrossRefGoogle Scholar
  8. 8.
    Saw J (2015) Amplatzer cardiac plug and amulet. In: Saw J, Kar S, Price MJ (eds) Left atrial appendage closure, contemporary cardiology. Springer, Cham, pp 181–193Google Scholar
  9. 9.
    López-Mínguez JR, González-Fernández R, Fernández-Vegas C, Millán-Nuñez V, Fuentes-Cañamero ME, Nogales-Asensio JM, Doncel-Vecino J, Elduayen-Gragera J, Ho SY, Sánchez-Quintana D (2014) Anatomical classification of left atrial appendages in specimens applicable to CT imaging techniques for implantation of amplatzer cardiac plug. J Cardiovasc Electrophysiol 25(9):976–984. CrossRefGoogle Scholar
  10. 10.
    Gafoor S, Heuer L, Franke J, Reinartz M, Bertog S, Vaskelyte L, Hofmann I, Sievert H (2015) Novel percutaneous LAA closure devices in clinical or preclinical trials. In: Saw J, Kar S, Price MJ (eds) Left atrial appendage closure, contemporary cardiology. Springer, Cham, pp 234–243Google Scholar
  11. 11.
    Lange M, Bültel H, Weglage H, Löffeld P, Wichter T (2016) Using a steerable guiding sheath to implant an AMPLATZER™Amulet™ left atrial appendage occluder for prevention of thromboembolic stroke. Int J Cardiol 221:466–467. CrossRefGoogle Scholar
  12. 12.
    Fu Y, Liu H, Huang W, Wang S, Liang Z (2009) Steerable catheters in minimally invasive vascular surgery. Int J Med Robot Comput Assist Surg 5(4):381–391. CrossRefGoogle Scholar
  13. 13.
    Jayender J, Patel RV, Michaud GF, Hata N (2011) Optimal transseptal puncture location for robot-assisted left atrial catheter ablation. Int J Med Robot Comput Assist Surg 7(2):193–201. CrossRefGoogle Scholar
  14. 14.
    Li Z, Chui CK, Cai Y, Anderson JH, Nowinski WL (2001) Interactive catheter shape modeling in interventional radiology simulation. In: Niessen WJ, Viergever MA (eds) Medical Image Computing and Computer-Assisted Intervention-MICCAI 2001. MICCAI 2001. Lecture Notes in Computer Science, vol 2208. Springer, Berlin, Heidelberg, pp 457–464.
  15. 15.
    Graf EC, Tiemann K, Praceus J, Lueth TC (2016) A planning system of the implant size and position for minimally-invasive closure of the left atrial appendage. In: 6th IEEE international conference on biomedical robotics and biomechatronics (BioRob) 2016, pp 293–298.
  16. 16.
    Lüth TC (2015) SG-library: Entwicklung einer grundlegenden MATLAB-Toolbox zu räumlichen Modellierung von Körper, Gelenken und Getrieben. 11. Getriebekolloquium, Garching, Tagungsband, pp 183–203.

Copyright information

© CARS 2018

Authors and Affiliations

  • Eva C. Graf
    • 1
  • Ilka Ott
    • 2
  • Julian Praceus
    • 1
  • Felix Bourier
    • 2
  • Tim C. Lueth
    • 1
  1. 1.Institute of Micro Technology and Medical Device TechnologyGarchingGermany
  2. 2.German Heart Center MunichMunichGermany

Personalised recommendations