Advertisement

Toward a real-time system for temporal enhanced ultrasound-guided prostate biopsy

  • Shekoofeh Azizi
  • Nathan Van Woudenberg
  • Samira Sojoudi
  • Ming Li
  • Sheng Xu
  • Emran M. Abu Anas
  • Pingkun Yan
  • Amir Tahmasebi
  • Jin Tae Kwak
  • Baris Turkbey
  • Peter Choyke
  • Peter Pinto
  • Bradford Wood
  • Parvin Mousavi
  • Purang Abolmaesumi
Original Article

Abstract

Purpose

We have previously proposed temporal enhanced ultrasound (TeUS) as a new paradigm for tissue characterization. TeUS is based on analyzing a sequence of ultrasound data with deep learning and has been demonstrated to be successful for detection of cancer in ultrasound-guided prostate biopsy. Our aim is to enable the dissemination of this technology to the community for large-scale clinical validation.

Methods

In this paper, we present a unified software framework demonstrating near-real-time analysis of ultrasound data stream using a deep learning solution. The system integrates ultrasound imaging hardware, visualization and a deep learning back-end to build an accessible, flexible and robust platform. A client–server approach is used in order to run computationally expensive algorithms in parallel. We demonstrate the efficacy of the framework using two applications as case studies. First, we show that prostate cancer detection using near-real-time analysis of RF and B-mode TeUS data and deep learning is feasible. Second, we present real-time segmentation of ultrasound prostate data using an integrated deep learning solution.

Results

The system is evaluated for cancer detection accuracy on ultrasound data obtained from a large clinical study with 255 biopsy cores from 157 subjects. It is further assessed with an independent dataset with 21 biopsy targets from six subjects. In the first study, we achieve area under the curve, sensitivity, specificity and accuracy of 0.94, 0.77, 0.94 and 0.92, respectively, for the detection of prostate cancer. In the second study, we achieve an AUC of 0.85.

Conclusion

Our results suggest that TeUS-guided biopsy can be potentially effective for the detection of prostate cancer.

Keywords

Temporal enhanced ultrasound Prostate cancer 3D slicer Real-time biopsy guidance 

Notes

Acknowledgements

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) and in part by the Canadian Institutes of Health Research (CIHR).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467
  2. 2.
    Ahmed HU, Bosaily AES, Brown LC, Gabe R, Kaplan R, Parmar MK, Collaco-Moraes Y, Ward K, Hindley RG, Freeman A (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389(10071):815–822CrossRefPubMedGoogle Scholar
  3. 3.
    Anas EMA, Nouranian S, Mahdavi SS, Spadinger I, Morris WJ, Salcudean SE, Mousavi P, Abolmaesumi P (2017) Clinical target-volume delineation in prostate brachytherapy using residual neural networks. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 365–373Google Scholar
  4. 4.
    Azizi S, Bayat S, Yan P, Tahmasebi A, Nir G, Kwak JT, Xu S, Wilson S, Iczkowski KA, Lucia MS, goldenberg L, Salcudean SE, Pinto P, Wood B, Abolmaesumi P, Mousavi P (2017) Detection and grading of prostate cancer using temporal enhanced ultrasound: combining deep neural networks and tissue mimicking simulations. Int J Comput Assist Radiol Surg 12(8):1293–1305CrossRefPubMedGoogle Scholar
  5. 5.
    Azizi S, Imani F, Ghavidel S, Tahmasebi A, Wood B, Mousavi P, Abolmaesumi P (2016) Detection of prostate cancer using temporal sequences of ultrasound data: a large clinical feasibility study. IJCARS 11:947–56Google Scholar
  6. 6.
    Azizi S, Imani F, Kwak J.T, Tahmasebi A, Xu S, Yan P, Kruecker J, Turkbey B, Choyke P, Pinto P, Wood B, Mousavi P, Abolmaesumi P (2016) Classifying cancer grades using temporal ultrasound for transrectal prostate biopsy. In: MICCAI. Springer, pp 653–661Google Scholar
  7. 7.
    Azizi S, Imani F, Zhuang B, Tahmasebi A, Kwak JT, Xu S, Uniyal N, Turkbey B, Choyke P, Pinto P, Wood B, Mousavi P, Abolmaesumi P (2015) Ultrasound-based detection of prostate cancer using automatic feature selection with deep belief networks. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 70–77Google Scholar
  8. 8.
    Azizi S, Mousavi P, Yan P, Tahmasebi A, Kwak JT, Xu S, Turkbey B, Choyke P, Pinto P, Wood B, Abolmaesumi P (2017) Transfer learning from RF to B-mode temporal enhanced ultrasound features for prostate cancer detection. Int J Computer Assist Radiol Surg 12:1111–1121CrossRefGoogle Scholar
  9. 9.
    Barentsz JO, Richenberg J, Clements R (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22(4):746–757CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Daoud MI, Mousavi P, Imani F, Rohling R, Abolmaesumi P (2013) Tissue classification using ultrasound-induced variations in acoustic backscattering features. IEEE TBME 60(2):310–320Google Scholar
  11. 11.
    Epstein JI, Feng Z, Trock BJ, Pierorazio PM (2012) Upgrading and downgrading of prostate cancer from biopsy to radical prostatectomy: incidence and predictive factors using the modified gleason grading system and factoring in tertiary grades. Eur Urol 61(5):1019–1024CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Feleppa EJ, Rondeau MJ, Lee P, Porter CR (2009) Prostate-cancer imaging using machine-learning classifiers: potential value for guiding biopsies, targeting therapy, and monitoring treatment. In: 2009 IEEE international ultrasonics symposium (IUS). IEEE, pp 527–529Google Scholar
  14. 14.
    Gers FA, Schmidhuber J, Cummins F (2000) Learning to forget: continual prediction with LSTM. Neural Comput 12(10):2451–2471CrossRefPubMedGoogle Scholar
  15. 15.
    Goossen T, Wijkstra H (2003) Transrectal ultrasound imaging and prostate cancer. Arch Ital Urol Androl 75(1):68–74PubMedGoogle Scholar
  16. 16.
    Imani F, Abolmaesumi P, Gibson E, Khojaste A, Gaed M, Moussa M, Gomez JA, Romagnoli C, Leveridge M, Chang S (2015) Computer-aided prostate cancer detection using ultrasound RF time series: in vivo feasibility study. IEEE TMI 34(11):2248–2257Google Scholar
  17. 17.
    Imani F, Ramezani M, Nouranian S, Gibson E, Khojaste A, Gaed M, Moussa M, Gomez JA, Romagnoli C, Leveridge M (2015) Ultrasound-based characterization of prostate cancer using joint independent component analysis. IEEE TBME 62(7):1796–1804Google Scholar
  18. 18.
    Kuru TH, Roethke MC, Seidenader J, Simpfendörfer T, Boxler S, Alammar K, Rieker P, Popeneciu VI, Roth W, Pahernik S (2013) Critical evaluation of magnetic resonance imaging targeted, transrectal ultrasound guided transperineal fusion biopsy for detection of prostate cancer. J Urol 190(4):1380–1386CrossRefPubMedGoogle Scholar
  19. 19.
    Lasso A, Heffter T, Rankin A, Pinter C, Ungi T, Fichtinger G (2014) PLUS: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng 61(10):2527–2537CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Llobet R, Pérez-Cortés JC, Toselli AH, Juan A (2007) Computer-aided detection of prostate cancer. Int J Med Inform 76(7):547–556CrossRefPubMedGoogle Scholar
  21. 21.
    Marks L, Young S, Natarajan S (2013) MRI-US fusion for guidance of targeted prostate biopsy. Curr Opin Urol 23(1):43CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mehrtash A, Pesteie M, Hetherington J, Behringer PA, Kapur T, Wells III WM, Rohling R, Fedorov A, Abolmaesumi P (2017) Deepinfer: open-source deep learning deployment toolkit for image-guided therapy. In: Proceedings of SPIE–the International Society for Optical Engineering, vol 10135. NIH Public AccessGoogle Scholar
  23. 23.
    Moradi M, Abolmaesumi P, Mousavi P (2010) Tissue typing using ultrasound RF time series: experiments with animal tissue samples. Med Phys 37(8):4401–4413CrossRefPubMedGoogle Scholar
  24. 24.
    Moradi M, Abolmaesumi P, Siemens DR, Sauerbrei EE, Boag AH, Mousavi P (2009) Augmenting detection of prostate cancer in transrectal ultrasound images using SVM and RF time series. IEEE TBME 56(9):2214–2224Google Scholar
  25. 25.
    Moradi M, Mahdavi SS, Nir G, Jones EC, Goldenberg SL, Salcudean SE (2013) Ultrasound RF time series for tissue typing: first in vivo clinical results. In: SPIE medical imaging. International Society for Optics and Photonics, pp 86701I-1–86701I-8Google Scholar
  26. 26.
    Oelze ML, O’Brien WD, Blue JP, Zachary JF (2004) Differentiation and characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using quantitative ultrasound imaging. IEEE TMI 23(6):764–771Google Scholar
  27. 27.
    Rapiti E, Schaffar R, Iselin C, Miralbell R, Pelte MF, Weber D, Zanetti R, Neyroud-Caspar I, Bouchardy C (2013) Importance and determinants of Gleason score undergrading on biopsy sample of prostate cancer in a population-based study. BMC Urol 13(1):19CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Salcudean SE, French D, Bachmann S, Zahiri-Azar R (2006) Viscoelasticity modeling of the prostate region using vibro-elastography. In: MICCAI. Springer, pp 389–396Google Scholar
  29. 29.
    Sauvain JL, Sauvain E, Rohmer P, Louis D, Nader N, Papavero R, Bremon JM, Jehl J (2013) Value of transrectal power doppler sonography in the detection of low-risk prostate cancers. Diagn Interv Imaging 94(1):60–67CrossRefPubMedGoogle Scholar
  30. 30.
    Siddiqui MM, Rais-Bahrami S, Turkbey B, George AK, Rothwax J, Shakir N, Okoro C, Raskolnikov D, Parnes HL, Linehan WM (2015) Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 313(4):390–397CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tokuda J, Fischer GS, Papademetris X, Yaniv Z, Ibanez L, Cheng P, Liu H, Blevins J, Arata J, Golby AJ (2009) OpenIGTLink: an open network protocol for image-guided therapy environment. Int J Med Robot Comput Assist Surg 5(4):423–434CrossRefGoogle Scholar

Copyright information

© CARS 2018

Authors and Affiliations

  • Shekoofeh Azizi
    • 1
  • Nathan Van Woudenberg
    • 1
  • Samira Sojoudi
    • 1
  • Ming Li
    • 2
  • Sheng Xu
    • 2
  • Emran M. Abu Anas
    • 3
  • Pingkun Yan
    • 7
  • Amir Tahmasebi
    • 4
  • Jin Tae Kwak
    • 5
  • Baris Turkbey
    • 2
  • Peter Choyke
    • 2
  • Peter Pinto
    • 2
  • Bradford Wood
    • 2
  • Parvin Mousavi
    • 6
  • Purang Abolmaesumi
    • 1
  1. 1.The University of British ColumbiaVancouverCanada
  2. 2.National Institutes of HealthBethesdaUSA
  3. 3.Johns Hopkins UniversityBaltimoreUSA
  4. 4.Philips Research North AmericaCambridgeUSA
  5. 5.Sejong UniversityGwangjin-gu, SeoulKorea
  6. 6.Queen’s UniversityKingstonCanada
  7. 7.Rensselaer Polytechnic InstituteTroyUSA

Personalised recommendations